11.令n=1得①. 令n=2得②. 查看更多

 

題目列表(包括答案和解析)

如圖,設(shè)A是由n×n個(gè)實(shí)數(shù)組成的n行n列的數(shù)表,其中au(i,j=1,2,3,…,n)表示位于第i行第j列的實(shí)數(shù),且au∈{1,-1}.記S(n,n)為所有這樣的數(shù)表構(gòu)成的集合.
對(duì)于A∈S(n,n),記ri(A)為A的第i行各數(shù)之積,cj(A)為A的第j列各數(shù)之積.令l(A=
n
i-1
r
i
(A)+
n
j-1
c
j
(A)).
(Ⅰ)請(qǐng)寫(xiě)出一個(gè)A∈s(4,4),使得l(A)=0;
(Ⅱ)是否存在A∈S(9,9),使得l(A)=0?說(shuō)明理由;
(Ⅲ)給定正整數(shù)n,對(duì)于所有的A∈S(n,n),求l(A)的取值集合.
a11 a12 a1n
a21 a22 a2n
an1 an2 ann

查看答案和解析>>

如圖,設(shè)A是由n×n個(gè)實(shí)數(shù)組成的n行n列的數(shù)表,其中au(i,j=1,2,3,…,n)表示位于第i行第j列的實(shí)數(shù),且au∈{1,-1}.記S(n,n)為所有這樣的數(shù)表構(gòu)成的集合.
對(duì)于A∈S(n,n),記ri(A)為A的第i行各數(shù)之積,cj(A)為A的第j列各數(shù)之積.令l(A=(A)+(A)).
(Ⅰ)請(qǐng)寫(xiě)出一個(gè)A∈s(4,4),使得l(A)=0;
(Ⅱ)是否存在A∈S(9,9),使得l(A)=0?說(shuō)明理由;
(Ⅲ)給定正整數(shù)n,對(duì)于所有的A∈S(n,n),求l(A)的取值集合.
a11a12a1n
a21a22a2n
an1an2ann

查看答案和解析>>

在數(shù)1和100之間插入n個(gè)實(shí)數(shù),使得這n+2個(gè)數(shù)構(gòu)成遞增的等比數(shù)列,將這n+2個(gè)數(shù)的乘積記作Tn,再令

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;

(Ⅱ)設(shè)求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

設(shè)數(shù)列{an},{bn}滿(mǎn)足a1=1,b1=0且
an+1=2an+3bn
bn+1=an+2bn
n=1,2,3,…

(Ⅰ)求λ的值,使得數(shù)列{an+λbn}為等比數(shù)列;
(Ⅱ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅲ)令數(shù)列{an}和{bn}的前n項(xiàng)和分別為Sn和S'n,求極限
lim
n→∞
Sn
S′n
的值.

查看答案和解析>>

已知函數(shù)數(shù)學(xué)公式,(a為常數(shù),e為自然對(duì)數(shù)的底).
(1)令數(shù)學(xué)公式,a=0,求μ'(x)和f'(x);
(2)若函數(shù)f(x)在x=0時(shí)取得極小值,試確定a的取值范圍;
[理](3)在(2)的條件下,設(shè)由f(x)的極大值構(gòu)成的函數(shù)為g(x),試判斷曲線g(x)只可能與直線2x-3y+m=0、3x-2y+n=0(m,n為確定的常數(shù))中的哪一條相切,并說(shuō)明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案