題目列表(包括答案和解析)
x | 1-x |
已知.
(1)求的極值,并證明:若
有
;
(2)設(shè),且
,
,證明:
,
若,由上述結(jié)論猜想一個(gè)一般性結(jié)論(不需要證明);
(3)證明:若,則
.
已知
(1)求的極值,
并證明:若有
;
(2)設(shè),且
,
,
證明:,
若,由上述結(jié)論猜想一個(gè)一般性結(jié)論(不需要證明);
(3)證明:若,則
已知函數(shù),數(shù)列
的項(xiàng)滿足:
,(1)試求
(2) 猜想數(shù)列的通項(xiàng),并利用數(shù)學(xué)歸納法證明.
【解析】第一問(wèn)中,利用遞推關(guān)系,
,
第二問(wèn)中,由(1)猜想得:然后再用數(shù)學(xué)歸納法分為兩步驟證明即可。
解: (1) ,
,
…………….7分
(2)由(1)猜想得:
(數(shù)學(xué)歸納法證明)i) ,
,命題成立
ii) 假設(shè)時(shí),
成立
則時(shí),
綜合i),ii) : 成立
已知,(其中
)
⑴求及
;
⑵試比較與
的大小,并說(shuō)明理由.
【解析】第一問(wèn)中取,則
;
…………1分
對(duì)等式兩邊求導(dǎo),得
取,則
得到結(jié)論
第二問(wèn)中,要比較與
的大小,即比較:
與
的大小,歸納猜想可得結(jié)論當(dāng)
時(shí),
;
當(dāng)時(shí),
;
當(dāng)時(shí),
;
猜想:當(dāng)時(shí),
運(yùn)用數(shù)學(xué)歸納法證明即可。
解:⑴取,則
;
…………1分
對(duì)等式兩邊求導(dǎo),得,
取,則
。 …………4分
⑵要比較與
的大小,即比較:
與
的大小,
當(dāng)時(shí),
;
當(dāng)時(shí),
;
當(dāng)時(shí),
;
…………6分
猜想:當(dāng)時(shí),
,下面用數(shù)學(xué)歸納法證明:
由上述過(guò)程可知,時(shí)結(jié)論成立,
假設(shè)當(dāng)時(shí)結(jié)論成立,即
,
當(dāng)時(shí),
而
∴
即時(shí)結(jié)論也成立,
∴當(dāng)時(shí),
成立。
…………11分
綜上得,當(dāng)時(shí),
;
當(dāng)時(shí),
;
當(dāng)時(shí),
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com