若-≥q.則f(p)=M.f(q)=m.(3)二次方程f(x)=ax2+bx+c=0的實根分布及條件. 查看更多

 

題目列表(包括答案和解析)

已知拋物線y2=4x的焦點為F,直線m為拋物線在第一象限內一點P處的切線,過P作平行于x軸的直線n,過焦點F平行于m的直線交n于點M,若|PM|=4,則點P的坐標為
 

查看答案和解析>>

已知拋物線y2=4x的焦點為F,在第一象限中過拋物線上任意一點P的切線為l,過P點作平行于x軸的直線m,過焦點F作平行于l的直線交m于M,若|PM|=4,則點P的坐標為
(3,2
3
)
(3,2
3
)

查看答案和解析>>

12、己知f(x)是R上的增函數(shù),且f(-1)=-1,f(2)=2,設P={x|f(x+t)<2},Q={x|f(x)<-1},若t≥3,則集合P,Q之間的關系是
P⊆Q

查看答案和解析>>

已知點P是雙曲線
x2
4
-
y2
5
=1
右支上一點,F(xiàn)是該雙曲線的右焦點,點M為線段PF的中點,若|OM|=3,則點P到該雙曲線右準線的距離為(  )

查看答案和解析>>

P是一個數(shù)集,且至少含有兩個數(shù),若對任意ab∈R,都有a+b、a-b, ab、 ∈P(除數(shù)b≠0),則稱P是一個數(shù)域.例如有理數(shù)集Q是數(shù)域;數(shù)集也是數(shù)域.有下列命題:

①整數(shù)集是數(shù)域;                     ②若有理數(shù)集,則數(shù)集M必為數(shù)域;

③數(shù)域必為無限集;                  ④存在無窮多個數(shù)域。

其中正確的命題的序號是          。(把你認為正確的命題的序號填填上)

 

查看答案和解析>>

                           2008年7月

【課前預習】

答案: 1、;  2、B.試題分析,可求得:。易知函數(shù)的零點所在區(qū)間為。

 3、;   4、-4。

四.典例解析

題型1:方程的根與函數(shù)零點

例1. 分析:利用函數(shù)零點的存在性定理或圖像進行判斷。

解析:(1)方法一:

。

方法二:

解得

所以函數(shù)。

(2)∵,

     ∴。

(3)∵,

      

     ∴,故存在零點。

評析:函數(shù)的零點存在性問題常用的辦法有三種:一是定理;二是用方程;三是用圖像

 

例2. 解析:(1)方法一令則根據(jù)選擇支可以求得<0;<0;>0.因為<0可得零點在(2,3)內選C

方法二:在同一平面直角坐標系中,畫出函數(shù)y=lgx與y=-x+3的圖象(如圖)。它們的交點橫坐標,顯然在區(qū)間(1,3)內,由此可排除A,D至于選B還是選C,由于畫圖精確性的限制,單憑直觀就比較困難了。實際上這是要比較與2的大小。當x=2時,lgx=lg2,3-x=1。由于lg2<1,因此>2,從而判定∈(2,3),故本題應選C

(2)原方程等價于

構造函數(shù),作出它們的圖像,易知平行于x軸的直線與拋物線的交點情況可得:

①當時,原方程有一解;

②當時,原方程有兩解;

③當時,原方程無解。

點評:圖象法求函數(shù)零點,考查學生的數(shù)形結合思想。本題是通過構造函數(shù)用數(shù)形結合法求方程lgx+x=3解所在的區(qū)間。數(shù)形結合,要在結合方面下功夫。不僅要通過圖象直觀估計,而且還要計算的鄰近兩個函數(shù)值,通過比較其大小進行判斷

題型2:零點存在性定理

例3.解析:(1)函數(shù)f(x)=x-ln(x+m),x∈(-m,+∞)連續(xù),且

當x∈(-m,1-m)時,f (x)<0,f(x)為減函數(shù),f(x)>f(1-m)

當x∈(1-m, +∞)時,f (x)>0,f(x)為增函數(shù),f(x)>f(1-m)

根據(jù)函數(shù)極值判別方法,f(1-m)=1-m為極小值,而且

對x∈(-m, +∞)都有f(x)≥f(1-m)=1-m

故當整數(shù)m≤1時,f(x) ≥1-m≥0

(2)證明:由(I)知,當整數(shù)m>1時,f(1-m)=1-m<0,

函數(shù)f(x)=x-ln(x+m),在 上為連續(xù)減函數(shù).

由所給定理知,存在唯一的

而當整數(shù)m>1時,

類似地,當整數(shù)m>1時,函數(shù)f(x)=x-ln(x+m),在 上為連續(xù)增函數(shù)且 f(1-m)與異號,由所給定理知,存在唯一的

故當m>1時,方程f(x)=0在內有兩個實根。

點評:本題以信息給予的形式考察零點的存在性定理。解決該題的解題技巧主要在區(qū)間的放縮和不等式的應用上。

例4. 解析:由零點存在性定理可知選項D不正確;對于選項B,可通過反例“在區(qū)間上滿足,但其存在三個解”推翻;同時選項A可通過反例“在區(qū)間上滿足,但其存在兩個解”;選項D正確,見實例“在區(qū)間上滿足,但其不存在實數(shù)解”。

點評:該問題詳細介紹了零點存在性定理的理論基礎。

題型3:二分法的概念

例5. 解析:如果函數(shù)在某區(qū)間滿足二分法題設,且在區(qū)間內存在兩個及以上的實根,二分法只可能求出其中的一個,只要限定了近似解的范圍就可以得到函數(shù)的近似解,二分法的實施滿足零點存在性定理,在區(qū)間內一定存在零點,甚至有可能得到函數(shù)的精確零點。

點評:該題深入解析了二分法的思想方法。

 

例6.解析:由四舍五入的原則知道,當時,精度達到。此時差限是0.0005,選項為C。

點評:該題考察了差限的定義,以及它對精度的影響。

題型4:應用“二分法”求函數(shù)的零點和方程的近似解

例7. 解析:原方程即。令,

用計算器做出如下對應值表

x

-2

-1

0

1

2

f(x)

2.5820

3.0530

27918

1.0794

-4.6974

觀察上表,可知零點在(1,2)內

取區(qū)間中點=1.5,且,從而,可知零點在(1,1.5)內;

再取區(qū)間中點=1.25,且,從而,可知零點在(1.25,1.5)內;

同理取區(qū)間中點=1.375,且,從而,可知零點在(1.25,1.375)內;

由于區(qū)間(1.25,1.375)內任一值精確到0.1后都是1.3。故結果是1.3。

點評:該題系統(tǒng)的講解了二分法求方程近似解的過程,通過本題學會借助精度終止二分法的過程。

例8. 分析:本例除借助計算器或計算機確定方程解所在的大致區(qū)間和解的個數(shù)外,你是否還可以想到有什么方法確定方程的根的個數(shù)?

略解:圖象在閉區(qū)間,上連續(xù)的單調函數(shù),在上至多有一個零點。

點評:①第一步確定零點所在的大致區(qū)間,,可利用函數(shù)性質,也可借助計算機或計算器,但盡量取端點為整數(shù)的區(qū)間,盡量縮短區(qū)間長度,通常可確定一個長度為1的區(qū)間;

②建議列表樣式如下:

零點所在區(qū)間

中點函數(shù)值

區(qū)間長度

[1,2]

>0

1

[1,1.5]

<0

0.5

[1.25,1.5]

<0

0.25

如此列表的優(yōu)勢:計算步數(shù)明確,區(qū)間長度小于精度時,即為計算的最后一步。

題型5:一元二次方程的根與一元二次函數(shù)的零點

例9. 分析:從二次方程的根分布看二次函數(shù)圖像特征,再根據(jù)圖像特征列出對應的不等式(組)。

解析:(1)設,

,知

(2)令

,

,∴,∴,

綜上,。

評析:二次方程、二次函數(shù)、二次不等式三者密不可分。

例10.解析:設,則的二根為

(1)由,可得  ,即,

       兩式相加得,所以,;

(2)由, 可得  。

,所以同號。

等價于

,

即  

解之得  。

點評:條件實際上給出了的兩個實數(shù)根所在的區(qū)間,因此可以考慮利用上述圖像特征去等價轉化。

【課外作業(yè)】

1. 答案:A,令即可;

2. 答案:B;

3.答案:C,由可得關于對稱,∴,∴,∴,∵,∴。

4、 答案:D, ∵,∴, ∴

5. 答案:C,先求出,根據(jù)單調性求解;

五.思維總結

1.函數(shù)零點的求法:

①(代數(shù)法)求方程的實數(shù)根;

②(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質找出零點。

2.解決二次函數(shù)的零點分布問題要善于結合圖像,從判別式、韋達定理、對稱軸、區(qū)間端點函數(shù)值的正負、二次函數(shù)圖像的開口方向等方面去考慮使結論成立的所有條件。函數(shù)與方程、不等式聯(lián)系密切,聯(lián)系的方法就是數(shù)形結合。

 

 


同步練習冊答案