若x0≤-<q.則f(p)=M.f(-)=m, 查看更多

 

題目列表(包括答案和解析)

已知f(x)是R上的增函數(shù),a,b∈R,下列四個(gè)命題:
①若a +b≥0,則f(a)+f(b)≥f(-a)+f(-b);
②若f(a)+f(b) ≥f(-a)+f(-b),則a+b≥0;
③若a+b<0,則f(a)+ f(b)<f(-a)+ f(-b),
④若f(a)+f(b)<f(-a)+ f(-b),則a+b<0,
其中真命題的個(gè)數(shù)為 

[     ]

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

下列結(jié)論錯(cuò)誤的是( 。

查看答案和解析>>

以下四個(gè)命題,是真命題的有
 
(把你認(rèn)為是真命題的序號都填上).
①若p:f(x)=lnx-2+x在區(qū)間(1,2)上有一個(gè)零點(diǎn);q:e0.2>e0.3,則p∧q為假命題;
②當(dāng)x>1時(shí),f(x)=x2,g(x)=x
1
2
,h(x)=x-2的大小關(guān)系是h(x)<g(x)<f(x);
③若f′(x0)=0,則f(x)在x=x0處取得極值;
④若不等式2-3x-2x2>0的解集為P,函數(shù)y=
x+2
+
1-2x
的定義域?yàn)镼,則“x∈P”是“x∈Q”的充分不必要條件.

查看答案和解析>>

已知a是函數(shù)的零點(diǎn),若0<x0<a,則f(x0)的值滿足(  ).

A.f(x0)=0             B.f(x0)>0      C. f(x0)<0      D.f(x0)的符號不確定

 

查看答案和解析>>

下列選項(xiàng)錯(cuò)誤的是(  )
A.若p且q為真命題,則p、q均為真命題
B.“x>2”是“x2-3x+2>0”的充分不必要條件
C.命題p:存在x0∈R,使得x02+x0+1<0,則¬p:任意x∈R,都有x2+x+1≥0
D.若f′(x0)=0,則f(x0)是函數(shù)f(x)的極值

查看答案和解析>>

                           2008年7月

【課前預(yù)習(xí)】

答案: 1、;  2、B.試題分析,可求得:。易知函數(shù)的零點(diǎn)所在區(qū)間為

 3、;   4、-4。

四.典例解析

題型1:方程的根與函數(shù)零點(diǎn)

例1. 分析:利用函數(shù)零點(diǎn)的存在性定理或圖像進(jìn)行判斷。

解析:(1)方法一:

。

方法二:

解得,

所以函數(shù)。

(2)∵,

     ∴

(3)∵,

       ,

     ∴,故存在零點(diǎn)。

評析:函數(shù)的零點(diǎn)存在性問題常用的辦法有三種:一是定理;二是用方程;三是用圖像

 

例2. 解析:(1)方法一令則根據(jù)選擇支可以求得<0;<0;>0.因?yàn)?sub><0可得零點(diǎn)在(2,3)內(nèi)選C

方法二:在同一平面直角坐標(biāo)系中,畫出函數(shù)y=lgx與y=-x+3的圖象(如圖)。它們的交點(diǎn)橫坐標(biāo),顯然在區(qū)間(1,3)內(nèi),由此可排除A,D至于選B還是選C,由于畫圖精確性的限制,單憑直觀就比較困難了。實(shí)際上這是要比較與2的大小。當(dāng)x=2時(shí),lgx=lg2,3-x=1。由于lg2<1,因此>2,從而判定∈(2,3),故本題應(yīng)選C

(2)原方程等價(jià)于

構(gòu)造函數(shù),作出它們的圖像,易知平行于x軸的直線與拋物線的交點(diǎn)情況可得:

①當(dāng)時(shí),原方程有一解;

②當(dāng)時(shí),原方程有兩解;

③當(dāng)時(shí),原方程無解。

點(diǎn)評:圖象法求函數(shù)零點(diǎn),考查學(xué)生的數(shù)形結(jié)合思想。本題是通過構(gòu)造函數(shù)用數(shù)形結(jié)合法求方程lgx+x=3解所在的區(qū)間。數(shù)形結(jié)合,要在結(jié)合方面下功夫。不僅要通過圖象直觀估計(jì),而且還要計(jì)算的鄰近兩個(gè)函數(shù)值,通過比較其大小進(jìn)行判斷

題型2:零點(diǎn)存在性定理

例3.解析:(1)函數(shù)f(x)=x-ln(x+m),x∈(-m,+∞)連續(xù),且

當(dāng)x∈(-m,1-m)時(shí),f (x)<0,f(x)為減函數(shù),f(x)>f(1-m)

當(dāng)x∈(1-m, +∞)時(shí),f (x)>0,f(x)為增函數(shù),f(x)>f(1-m)

根據(jù)函數(shù)極值判別方法,f(1-m)=1-m為極小值,而且

對x∈(-m, +∞)都有f(x)≥f(1-m)=1-m

故當(dāng)整數(shù)m≤1時(shí),f(x) ≥1-m≥0

(2)證明:由(I)知,當(dāng)整數(shù)m>1時(shí),f(1-m)=1-m<0,

函數(shù)f(x)=x-ln(x+m),在 上為連續(xù)減函數(shù).

由所給定理知,存在唯一的

而當(dāng)整數(shù)m>1時(shí),

類似地,當(dāng)整數(shù)m>1時(shí),函數(shù)f(x)=x-ln(x+m),在 上為連續(xù)增函數(shù)且 f(1-m)與異號,由所給定理知,存在唯一的

故當(dāng)m>1時(shí),方程f(x)=0在內(nèi)有兩個(gè)實(shí)根。

點(diǎn)評:本題以信息給予的形式考察零點(diǎn)的存在性定理。解決該題的解題技巧主要在區(qū)間的放縮和不等式的應(yīng)用上。

例4. 解析:由零點(diǎn)存在性定理可知選項(xiàng)D不正確;對于選項(xiàng)B,可通過反例“在區(qū)間上滿足,但其存在三個(gè)解”推翻;同時(shí)選項(xiàng)A可通過反例“在區(qū)間上滿足,但其存在兩個(gè)解”;選項(xiàng)D正確,見實(shí)例“在區(qū)間上滿足,但其不存在實(shí)數(shù)解”。

點(diǎn)評:該問題詳細(xì)介紹了零點(diǎn)存在性定理的理論基礎(chǔ)。

題型3:二分法的概念

例5. 解析:如果函數(shù)在某區(qū)間滿足二分法題設(shè),且在區(qū)間內(nèi)存在兩個(gè)及以上的實(shí)根,二分法只可能求出其中的一個(gè),只要限定了近似解的范圍就可以得到函數(shù)的近似解,二分法的實(shí)施滿足零點(diǎn)存在性定理,在區(qū)間內(nèi)一定存在零點(diǎn),甚至有可能得到函數(shù)的精確零點(diǎn)。

點(diǎn)評:該題深入解析了二分法的思想方法。

 

例6.解析:由四舍五入的原則知道,當(dāng)時(shí),精度達(dá)到。此時(shí)差限是0.0005,選項(xiàng)為C。

點(diǎn)評:該題考察了差限的定義,以及它對精度的影響。

題型4:應(yīng)用“二分法”求函數(shù)的零點(diǎn)和方程的近似解

例7. 解析:原方程即。令

用計(jì)算器做出如下對應(yīng)值表

x

-2

-1

0

1

2

f(x)

2.5820

3.0530

27918

1.0794

-4.6974

觀察上表,可知零點(diǎn)在(1,2)內(nèi)

取區(qū)間中點(diǎn)=1.5,且,從而,可知零點(diǎn)在(1,1.5)內(nèi);

再取區(qū)間中點(diǎn)=1.25,且,從而,可知零點(diǎn)在(1.25,1.5)內(nèi);

同理取區(qū)間中點(diǎn)=1.375,且,從而,可知零點(diǎn)在(1.25,1.375)內(nèi);

由于區(qū)間(1.25,1.375)內(nèi)任一值精確到0.1后都是1.3。故結(jié)果是1.3。

點(diǎn)評:該題系統(tǒng)的講解了二分法求方程近似解的過程,通過本題學(xué)會借助精度終止二分法的過程。

例8. 分析:本例除借助計(jì)算器或計(jì)算機(jī)確定方程解所在的大致區(qū)間和解的個(gè)數(shù)外,你是否還可以想到有什么方法確定方程的根的個(gè)數(shù)?

略解:圖象在閉區(qū)間,上連續(xù)的單調(diào)函數(shù),在,上至多有一個(gè)零點(diǎn)。

點(diǎn)評:①第一步確定零點(diǎn)所在的大致區(qū)間,可利用函數(shù)性質(zhì),也可借助計(jì)算機(jī)或計(jì)算器,但盡量取端點(diǎn)為整數(shù)的區(qū)間,盡量縮短區(qū)間長度,通?纱_定一個(gè)長度為1的區(qū)間;

②建議列表樣式如下:

零點(diǎn)所在區(qū)間

中點(diǎn)函數(shù)值

區(qū)間長度

[1,2]

>0

1

[1,1.5]

<0

0.5

[1.25,1.5]

<0

0.25

如此列表的優(yōu)勢:計(jì)算步數(shù)明確,區(qū)間長度小于精度時(shí),即為計(jì)算的最后一步。

題型5:一元二次方程的根與一元二次函數(shù)的零點(diǎn)

例9. 分析:從二次方程的根分布看二次函數(shù)圖像特征,再根據(jù)圖像特征列出對應(yīng)的不等式(組)。

解析:(1)設(shè),

,知,

(2)令

,

,∴,∴,

綜上,

評析:二次方程、二次函數(shù)、二次不等式三者密不可分。

例10.解析:設(shè),則的二根為。

(1)由,可得  ,即,

       兩式相加得,所以,

(2)由, 可得  。

,所以同號。

等價(jià)于

,

即  

解之得  。

點(diǎn)評:條件實(shí)際上給出了的兩個(gè)實(shí)數(shù)根所在的區(qū)間,因此可以考慮利用上述圖像特征去等價(jià)轉(zhuǎn)化。

【課外作業(yè)】

1. 答案:A,令即可;

2. 答案:B;

3.答案:C,由可得關(guān)于對稱,∴,∴,∴,∵,∴。

4、 答案:D, ∵,∴, ∴

5. 答案:C,先求出,根據(jù)單調(diào)性求解;

五.思維總結(jié)

1.函數(shù)零點(diǎn)的求法:

①(代數(shù)法)求方程的實(shí)數(shù)根;

②(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn)。

2.解決二次函數(shù)的零點(diǎn)分布問題要善于結(jié)合圖像,從判別式、韋達(dá)定理、對稱軸、區(qū)間端點(diǎn)函數(shù)值的正負(fù)、二次函數(shù)圖像的開口方向等方面去考慮使結(jié)論成立的所有條件。函數(shù)與方程、不等式聯(lián)系密切,聯(lián)系的方法就是數(shù)形結(jié)合。

 

 


同步練習(xí)冊答案