(Ⅰ)求證:, 查看更多

 

題目列表(包括答案和解析)

(Ⅰ)求證:
(Ⅱ)化簡:

查看答案和解析>>

(Ⅰ)求證:
(Ⅱ)利用第(Ⅰ)問的結(jié)果證明Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1;  
(Ⅲ)其實我們常借用構(gòu)造等式,對同一個量算兩次的方法來證明組合等式,譬如:(1+x)1+(1+x)2+(1+x)3+…+(1+x)n=;,由左邊可求得x2的系數(shù)為C22+C32+C42+…+Cn2,利用右式可得x2的系數(shù)為Cn+13,所以C22+C32+C42+…+Cn2=Cn+13.請利用此方法證明:(C2n2-(C2n12+(C2n22-(C2n32+…+(C2n2n2=(-1)nC2nn

查看答案和解析>>

(Ⅰ)求證:
sinx
1-cosx
=
1+cosx
sinx

(Ⅱ)化簡:
tan(3π-α)
sin(π-α)sin(
3
2
π-α)
+
sin(2π-α)cos(α-
2
)
sin(
2
+α)cos(2π+α)

查看答案和解析>>

(Ⅰ)求證:
C
m
n
=
n
m
C
m-1
n-1
;
(Ⅱ)利用第(Ⅰ)問的結(jié)果證明Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1;  
(Ⅲ)其實我們常借用構(gòu)造等式,對同一個量算兩次的方法來證明組合等式,譬如:(1+x)1+(1+x)2+(1+x)3+…+(1+x)n=
(1+x)[1-(1+x)n]
1-(1+x)
=
(1+x)n+1-(1+x)
x
;,由左邊可求得x2的系數(shù)為C22+C32+C42+…+Cn2,利用右式可得x2的系數(shù)為Cn+13,所以C22+C32+C42+…+Cn2=Cn+13.請利用此方法證明:(C2n02-(C2n12+(C2n22-(C2n32+…+(C2n2n2=(-1)nC2nn

查看答案和解析>>

(Ⅰ)求證:
sinx
1-cosx
=
1+cosx
sinx
;
(Ⅱ)化簡:
tan(3π-α)
sin(π-α)sin(
3
2
π-α)
+
sin(2π-α)cos(α-
2
)
sin(
2
+α)cos(2π+α)

查看答案和解析>>

 

一、選擇題(本大題共10小題,每小題5分,滿分50分.在每小題給出的四個選項中,只有一項是符合題目要求的)

題號

1

2

3

4

5

6

7

8

9

10

答案

D

C

B

B

C

A

D

B

A

C

二、填空題(每小題4分,共28分)

11.1+2i          12.5            13.             14.  13   

15.  2或           16.          17.9

三、解答題:本大題共5小題,滿分72分.解答須寫出文字說明、證明過程和演算步驟.

18.(本題滿分14分)

解:(1)f(x)=    T=4

   (2)    (3)兩邊平方得

,而        ∴

19.(本小題滿分14分)

   (1)證明:∵A/O⊥面CEFB  

∴EF⊥A/O,又EF⊥EC  

A/O∩EC=0

∴EF⊥面A/EC 

而A/C面A/EC

 ∴EF⊥A/C

   (2)

20.(本題滿分14分)

解:(1)an+1=2Sn+1,an=2Sn-1+1兩式相減得an+1=3an(a≥2),又a2=2S1+1=2a1+1=3=3a1 

  {an}是以a1=1為首項,3為公比的等比數(shù)列,an=3n-1

(2)Tn=5n2+20n

21.(本小題滿分15分)

解:(1)W:x2=6y

   (2)設AC: 

設A(x1,y1),C(x2,y2)  |AC|=6(k2+1)

同理|BD|=6

SABCD­=

當k=±1時取等號

22.(本小題滿分15分)

解:(1)f(x)=ax34ax2+4ax

         f/(x)=3ax28ax+4a=a(3x2)(x2)=0x=或2

∵f(x)有極大值32,而f(2)=0  ∴f()=32=7,a=27

   (2)f/(x)=a(3x2)(x2)

當a>0時,f(x)=[ 2,]上遞增在[]上遞減,

    ∴0<a<

當a<0時,f(x)在[2,]上遞減,在[]上遞增

f(2)= 32a>f(1)=a    ∴    ∴

綜上

 

 

 

 


同步練習冊答案