題目列表(包括答案和解析)
本小題滿分12分)
某商店搞促銷活動,規(guī)則如下:木箱內(nèi)放有5枚白棋子和5枚黑棋子,顧客從中一次性任意取出5枚棋子,如果取出的5枚棋子中恰有5枚白棋子或4枚白棋子或3枚白棋子,則有獎品,獎勵辦法如下表:
取出的棋子 | 獎品 |
5枚白棋子 | 價值50元的商品 |
4枚白棋子 | 價值30元的商品 |
3枚白棋子 | 價值10元的商品 |
本小題滿分12分)
某商店搞促銷活動,規(guī)則如下:木箱內(nèi)放有5枚白棋子和5枚黑棋子,顧客從中一次性任意取出5枚棋子,如果取出的5枚棋子中恰有5枚白棋子或4枚白棋子或3枚白棋子,則有獎品,獎勵辦法如下表:
取出的棋子 |
獎品 |
5枚白棋子 |
價值50元的商品 |
4枚白棋子 |
價值30元的商品 |
3枚白棋子 |
價值10元的商品 |
如果取出的不是上述三種情況,則顧客需用50元購買商品.
(1)求獲得價值50元的商品的概率;
(2)求獲得獎品的概率;
(3)如果顧客所買商品成本價為10元,假設(shè)有10 000人次參加這項促銷活動,則商家可以獲得的利潤大約是多少?(精確到元)
取出的棋子 | 獎品 |
5枚白棋子 | 價值50元的商品 |
4枚白棋子 | 價值30元的商品 |
3枚白棋子 | 價值10元的商品 |
(本小題滿分12分)某商場銷售某種商品的經(jīng)驗表明,該商品每日的銷售量(單位:千克)與銷售價格(單位:元/千克)滿足關(guān)系式,其中,為常數(shù),已知銷售價格為5元/千克時,每日可售出該商品11千克。
(1)求的值;
(2)若該商品的成本為3元/千克,試確定銷售價格的值,使商場每日銷售該商品所獲得的利潤最大。
(本小題滿分12分)
某校有一貧困學生因病需手術(shù)治療,但現(xiàn)在還差手術(shù)費1.1萬元.團委計劃在全校開展愛心募捐活動,為了增加活動的趣味性吸引更多學生參與,特舉辦“搖獎100%中獎”活動.凡捐款10元便可享受一次搖獎機會,如圖是搖獎機的示意圖,搖獎機的旋轉(zhuǎn)盤是均勻的,扇形區(qū)域A,B,C,D,E所對應(yīng)的圓心角的比值分別為1:2:3:4:5.相應(yīng)區(qū)域分別設(shè)立一、二、三、四、五等獎,獎品分別為價值5元、4元、3元、2元、1元的學習用品.搖獎時,轉(zhuǎn)動圓盤片刻,待停止后,固定指針指向哪個區(qū)域(邊線忽略不計)即可獲得相應(yīng)價值的學習用品(如圖指針指向區(qū)域,可獲得價值3元的學習用品).
(1)預(yù)計全校捐款10元者將會達到1500人次,那么除去購買學習用品的款項后,剩余款項是否能幫助該生完成手術(shù)治療?
(2)如果學生甲捐款20元,獲得了兩次搖獎機會,求他獲得價值6元時的學習用品的概率.
一、選擇題:本大題共12小題,每小題5分,共60分. 在每小題給出的四個選項中,選擇一個符合題目要求的選項.
(1)C (2)B (3)D (4)C (5)B (6)B
(7)A (8)C (9)B (10)D (11)A (12)B
二、填空題:本大題共4小題,每小題4分,共16分. 答案填在題中橫線上.
13. 如果一個二面角的兩個面與另一個二面角的兩個面分別垂直,則這兩個二面角相等或互補 假 14. 15. 0 16.
三、解答題:本大題共6小題,共74分. 解答應(yīng)寫出文字說明、證明過程或演算步驟.
17. 解:(Ⅰ)………2分
………4分
………6分
(II)
……8分
的圖象與x軸正半軸的第一個交點為 ………10分
所以的圖象、y軸的正半軸及x軸的正半軸三者圍成圖形的面積
= …12分
18. 解:(Ⅰ)設(shè)搖獎一次,獲得一、二、三、四、五等獎的事件分別記為.
則其概率分別為……3分
設(shè)搖獎一次支出的學習用品相應(yīng)的款項為,則的分布列為:
1
2
3
4
5
.………6分
若捐款10元者達到1500人次,那么購買學習用品的款項為(元),
除去購買學習用品的款項后,剩余款項為(元),
故剩余款項可以幫助該生完成手術(shù)治療. ………8分
(II)記事件“學生甲捐款20元獲得價值6元的學習用品”為,則.
即學生甲捐款20元獲得價值6元的學習用品的概率為………12分
19. 以D為原點,以DA、DC、DD1所在直線分別為x軸,z軸建立空間直角坐標系D―xyz如圖,則有A(2,0,0),B(2,2,0),C(0,2,0),A1(1,0,2),B1(1,1,2),C1(0,1,2),D1(0,0,2). … 3分
(Ⅰ)證明:設(shè)則有所以,,∴平面;………6分
(II)解:
設(shè)為平面的法向量,
于是………8分
同理可以求得平面的一個法向量,………10分
∴二面角的余弦值為. ………12分
20. 解:(Ⅰ)對求導數(shù),得,切點是的切線方程是.…2分
當時,切線過點,即,得;
當時,切線過點,即,得.
所以數(shù)列是首項,公比為的等比數(shù)列,
所以數(shù)列的通項公式為.………4分
(II)當時,數(shù)列的前項和=
同乘以,得=兩式相減,…………8分
得=,
所以=.………12分
21.解:(Ⅰ)由于所以
………2分
令,
當a=2時,
所以2-a≠0.
① 當2-a>0,即a<2時,的變化情況如下表1:
x
0
(0,2-a)
2-a
(2-a,+∞)
-
0
+
0
-
ㄋ
極小值
ㄊ
極大值
ㄋ
此時應(yīng)有f(0)=0,所以a=0<2;
②當2-a<0,即a>2時,的變化情況如下表2:
x
2-a
(2-a,0)
0
(0,+∞)
-
0
+
0
-
ㄋ
極小值
ㄊ
極大值
ㄋ
此時應(yīng)有
而
綜上可知,當a=0或4時,的極小值為0. ………6分
(II)若a<2,則由表1可知,應(yīng)有 也就是
設(shè)
由于a<2得
所以方程 無解. ………8分
若a>2,則由表2可知,應(yīng)有f(0)=3,即a=3. ………10分
綜上可知,當且僅當a=3時,f(x)的極大值為3. ………12分
22. 解:(Ⅰ)由得,;……4分
由直線與圓相切,得,所以,。所以橢圓的方程是.……4分
(II)由條件知,,即動點到定點的距離等于它到直線:的距離,由拋物線的定義得點的軌跡的方程是. ……8分
(III)由(2)知,設(shè),,所以,.
由,得.因為,化簡得,……10分
(當且僅當,即時等號成立). ……12分 ,又
所以當,即時,,故的取值范圍是.14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com