即. ∴的取值范圍是.-----12分 B卷(共50分) 查看更多

 

題目列表(包括答案和解析)

三個(gè)同學(xué)對(duì)問(wèn)題“關(guān)于x的不等式x2+25+|x3-5x2|≥ax在[1,12]上恒成立,求實(shí)數(shù)a的取值范圍”提出各自的解題思路.
甲說(shuō):“只須不等式左邊的最小值不小于右邊的最大值”.
乙說(shuō):“把不等式變形為左邊含變量x的函數(shù),右邊僅含常數(shù),求函數(shù)的最值”.
丙說(shuō):“把不等式兩邊看成關(guān)于x的函數(shù),作出函數(shù)圖象”.
參考上述解題思路,你認(rèn)為他們所討論的問(wèn)題的正確結(jié)論,即a的取值范圍是
 

查看答案和解析>>

三個(gè)同學(xué)對(duì)問(wèn)題“關(guān)于x的不等式x2+25+|x3-5x2|≥ax在[1,12]上恒成立,求實(shí)數(shù)a的取值范圍”提出各自的解題思路.

甲說(shuō):“只需不等式左邊的最小值不小于右邊的最大值.”

乙說(shuō):“把不等式變形為左邊含變量x的函數(shù),右邊僅含常數(shù),求函數(shù)的最值.”

丙說(shuō):“把不等式兩邊看成關(guān)于x的函數(shù),作出函數(shù)圖象.”

參考上述解題思路,你認(rèn)為他們所討論的問(wèn)題的正確結(jié)論,即a的取值范圍是__________.

查看答案和解析>>

三個(gè)同學(xué)對(duì)問(wèn)題“關(guān)于x的不等式x2+25+|x3-5x2|≥ax在[1,12]上恒成立,求實(shí)數(shù)a的取值范圍”提出各自的解題思路.
甲說(shuō):“只須不等式左邊的最小值不小于右邊的最大值”.
乙說(shuō):“把不等式變形為左邊含變量x的函數(shù),右邊僅含常數(shù),求函數(shù)的最值”.
丙說(shuō):“把不等式兩邊看成關(guān)于x的函數(shù),作出函數(shù)圖象”.
參考上述解題思路,你認(rèn)為他們所討論的問(wèn)題的正確結(jié)論,即a的取值范圍是   

查看答案和解析>>

三個(gè)同學(xué)對(duì)問(wèn)題“關(guān)于x的不等式x2+25+|x3-5x2|≥ax在[1,12]上恒成立,求實(shí)數(shù)a的取值范圍”提出各自的解題思路.
甲說(shuō):“只須不等式左邊的最小值不小于右邊的最大值”.
乙說(shuō):“把不等式變形為左邊含變量x的函數(shù),右邊僅含常數(shù),求函數(shù)的最值”.
丙說(shuō):“把不等式兩邊看成關(guān)于x的函數(shù),作出函數(shù)圖象”.
參考上述解題思路,你認(rèn)為他們所討論的問(wèn)題的正確結(jié)論,即a的取值范圍是______.

查看答案和解析>>

三個(gè)同學(xué)對(duì)問(wèn)題“關(guān)于x的不等式x2+25+|x3-5x2|≥ax在[1,12]上恒成立,求實(shí)數(shù)a的取值范圍”提出各自的解題思路.
甲說(shuō):“只須不等式左邊的最小值不小于右邊的最大值”.
乙說(shuō):“把不等式變形為左邊含變量x的函數(shù),右邊僅含常數(shù),求函數(shù)的最值”.
丙說(shuō):“把不等式兩邊看成關(guān)于x的函數(shù),作出函數(shù)圖象”.
參考上述解題思路,你認(rèn)為他們所討論的問(wèn)題的正確結(jié)論,即a的取值范圍是   

查看答案和解析>>


同步練習(xí)冊(cè)答案