題目列表(包括答案和解析)
函數(shù)在閉區(qū)間[-3,0]上的最大值、最小值分別是( )
A.1,-1 B. 3,-17 C. 1,-17 D.9,-19
函數(shù)在閉區(qū)間 [-3,0] 上的最大值、最小值分別是( )
A.1,? 1 B.1,? 17 C.3,? 17 D.9,? 197
函數(shù)在閉區(qū)間[-3,0]上的最大值、最小值分別是
A.1,-1 B.1,-17 C.3,-17 D.9,-19
函數(shù)在閉區(qū)間 [– 3,0] 上的最大值、最小值分別是( )
A.1,− 1 B.1,− 17
C.3,− 17 D.9,− 197
函數(shù)在閉區(qū)間[-3,0]上的最大值、最小值分別是 .
一、選擇題:本題考查基本知識和基本運(yùn)算,每小題5分,滿分60分.
(1)A (2)B (3)D (4)C (5)A (6)B
(7)C (8)A (9)D (10)C (11)B (12)A
二、填空題:本題考查基本知識和基本運(yùn)算,每小題4分,滿分16分.
(13) (14)
(15)2 (16)
三、解答題
(17)本小題主要考查三角函數(shù)的基本公式和三角函數(shù)的恒等變換等基本知識,以及推理能力和運(yùn)算能力.滿分12分.
解:由已知.
從而
.
(18)本小題主要考查線面關(guān)系和正方體性質(zhì)等基本知識,考查空間想象能力和推理論證能力.滿分12分.
解法一:(I)連結(jié)BP.
∵AB⊥平面BCC1B1, ∴AP與平面BCC1B1所成的角就是∠APB,
∵CC1=4CP,CC1=4,∴CP=I.
在Rt△PBC中,∠PCB為直角,BC=4,CP=1,故BP=.
在Rt△APB中,∠ABP為直角,tan∠APB=
∴∠APB=
(19)本小題主要考查簡單線性規(guī)劃的基本知識,以及運(yùn)用數(shù)學(xué)知識解決實(shí)際問題的能力.滿分12分.
解:設(shè)投資人分別用x萬元、y萬元投資甲、乙兩個項(xiàng)目.
由題意知
目標(biāo)函數(shù)z=x+0.5y.
上述不等式組表示的平面區(qū)域如圖所示,陰影部分(含邊界)即可行域.
|