因此.對一切正整數(shù).當(dāng)時.取得最大值. 查看更多

 

題目列表(包括答案和解析)

已知數(shù)列{an}的前n項和為Sn,且對一切正整數(shù)n都有Sn=n2+
1
2
an
(1)證明:an+1+an=4n+2;
(2)求數(shù)列{an}的通項公式;
(3)設(shè)f(n)=(1-
1
a1
)(1-
1
a2
)..(1-
1
an
2n+1
,求證:f(n+1)<f(n)對一切n∈N×都成立.

查看答案和解析>>

已知數(shù)列{an}的前n項和為Sn,且an=
1
2
(3n+Sn) 對一切正整數(shù)n成立
(Ⅰ)求出數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=
n
3
an
,求數(shù)列{bn}的前n項和Bn

查看答案和解析>>

已知Sn是正項數(shù)列{an}的前n項和,且
Sn
1
4
與(an+1)2的等比中項.
(1)求證:數(shù)列{an}是等差數(shù)列;
(2)若bn=
an
2n
,求數(shù)列{bn}的前n項和Tn;
(3)若bn
1
4
m2-m-
1
2
對一切正整數(shù)n恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

(2010•河?xùn)|區(qū)一模)已知函數(shù)f(x)=ln(1+ax)-x2(a>0,x∈(0,1]).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若不等式
1
n2
+λ≥ln(1+
2
n
)對一切正整數(shù)n恒成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

在平面直角坐標(biāo)上有一點列P1(x1,y1),P2(x2,y2)…,Pn(xn,yn)…,對一切正整數(shù)n,點Pn在函數(shù)
y=3x+
13
4
的圖象上,且Pn的橫坐標(biāo)構(gòu)成以-
5
2
為首項,-1為公差的等差數(shù)列{xn}.
(Ⅰ)求點Pn的坐標(biāo);
(Ⅱ)設(shè)拋物線列C1,C2,C3,…Cn,…中的每一條的對稱軸都垂直于x軸,拋物線Cn的頂點為Pn,且過點Dn(0,n2+1),記與拋物線Cn相切于點Dn的直線的斜率為Kn,求
1
k1k2
+
1
k2k3
+…+
1
knkn+1
的值.

查看答案和解析>>


同步練習(xí)冊答案