題目列表(包括答案和解析)
1 | 4 |
已知函數(shù) R).
(Ⅰ)若 ,求曲線 在點(diǎn) 處的的切線方程;
(Ⅱ)若 對(duì)任意 恒成立,求實(shí)數(shù)a的取值范圍.
【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。
第一問(wèn)中,利用當(dāng)時(shí),.
因?yàn)榍悬c(diǎn)為(), 則,
所以在點(diǎn)()處的曲線的切線方程為:
第二問(wèn)中,由題意得,即即可。
Ⅰ)當(dāng)時(shí),.
,
因?yàn)榍悬c(diǎn)為(), 則,
所以在點(diǎn)()處的曲線的切線方程為:. ……5分
(Ⅱ)解法一:由題意得,即. ……9分
(注:凡代入特殊值縮小范圍的均給4分)
,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911405226518211/SYS201207091141419057564738_ST.files/image016.png">,所以恒成立,
故在上單調(diào)遞增, ……12分
要使恒成立,則,解得.……15分
解法二: ……7分
(1)當(dāng)時(shí),在上恒成立,
故在上單調(diào)遞增,
即. ……10分
(2)當(dāng)時(shí),令,對(duì)稱軸,
則在上單調(diào)遞增,又
① 當(dāng),即時(shí),在上恒成立,
所以在單調(diào)遞增,
即,不合題意,舍去
②當(dāng)時(shí),, 不合題意,舍去 14分
綜上所述:
已知遞增等差數(shù)列滿足:,且成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)若不等式對(duì)任意恒成立,試猜想出實(shí)數(shù)的最小值,并證明.
【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的運(yùn)用以及數(shù)列求和的運(yùn)用。第一問(wèn)中,利用設(shè)數(shù)列公差為,
由題意可知,即,解得d,得到通項(xiàng)公式,第二問(wèn)中,不等式等價(jià)于,利用當(dāng)時(shí),;當(dāng)時(shí),;而,所以猜想,的最小值為然后加以證明即可。
解:(1)設(shè)數(shù)列公差為,由題意可知,即,
解得或(舍去). …………3分
所以,. …………6分
(2)不等式等價(jià)于,
當(dāng)時(shí),;當(dāng)時(shí),;
而,所以猜想,的最小值為. …………8分
下證不等式對(duì)任意恒成立.
方法一:數(shù)學(xué)歸納法.
當(dāng)時(shí),,成立.
假設(shè)當(dāng)時(shí),不等式成立,
當(dāng)時(shí),, …………10分
只要證 ,只要證 ,
只要證 ,只要證 ,
只要證 ,顯然成立.所以,對(duì)任意,不等式恒成立.…14分
方法二:?jiǎn)握{(diào)性證明.
要證
只要證 ,
設(shè)數(shù)列的通項(xiàng)公式, …………10分
, …………12分
所以對(duì),都有,可知數(shù)列為單調(diào)遞減數(shù)列.
而,所以恒成立,
故的最小值為.
為了解高中一年級(jí)學(xué)生身高情況,某校按10%的比例對(duì)全校700名高中一年級(jí)學(xué)生按性別進(jìn)行抽樣檢查,測(cè)得身高頻數(shù)分布表如下表1、表2.
表1:男生身高頻數(shù)分布表
身高(cm) |
[160,165) |
[165,170) |
[170,175) |
[175,180) |
[180,185) |
[185,190) |
頻數(shù) |
2 |
5 |
14 |
13 |
4 |
2 |
表2:女生身高頻數(shù)分布表
身高(cm) |
[150,155) |
[155,160) |
[160,165) |
[165,170) |
[170,175) |
[175,180) |
頻數(shù) |
1 |
7 |
12 |
6 |
3 |
1 |
(I)求該校男生的人數(shù)并完成下面頻率分布直方圖;
(II)估計(jì)該校學(xué)生身高在的概率;
(III)從樣本中身高在180190cm之間的男生中任選2人,求至少有1人身高在185190cm之間的概率。
【解析】第一問(wèn)樣本中男生人數(shù)為40 ,
由分層抽樣比例為10%可得全校男生人數(shù)為400
(2)中由表1、表2知,樣本中身高在的學(xué)生人數(shù)為:5+14+13+6+3+1=42,樣本容量為70 ,所以樣本中學(xué)生身高在的頻率
故由估計(jì)該校學(xué)生身高在的概率
(3)中樣本中身高在180185cm之間的男生有4人,設(shè)其編號(hào)為①②③④ 樣本中身高在185190cm之間的男生有2人,設(shè)其編號(hào)為⑤⑥從上述6人中任取2人的樹(shù)狀圖,故從樣本中身高在180190cm之間的男生中任選2人得所有可能結(jié)果數(shù)為15,求至少有1人身高在185190cm之間的可能結(jié)果數(shù)為9,因此,所求概率
由表1、表2知,樣本中身高在的學(xué)生人數(shù)為:5+14+13+6+3+1=42,樣本容量為70 ,所以樣本中學(xué)生身高在
的頻率-----------------------------------------6分
故由估計(jì)該校學(xué)生身高在的概率.--------------------8分
(3)樣本中身高在180185cm之間的男生有4人,設(shè)其編號(hào)為①②③④ 樣本中身高在185190cm之間的男生有2人,設(shè)其編號(hào)為⑤⑥從上述6人中任取2人的樹(shù)狀圖為:
--10分
故從樣本中身高在180190cm之間的男生中任選2人得所有可能結(jié)果數(shù)為15,求至少有1人身高在185190cm之間的可能結(jié)果數(shù)為9,因此,所求概率
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com