解得或. -------------6分 查看更多

 

題目列表(包括答案和解析)

解答題:解答應寫出文字說明,證明過程或演算步驟.

有同一型號的汽車100輛,為了解這種汽車每蠔油1L所行路程的情況,現從中隨即抽出10輛在同一條件下進行蠔油1L所行路程實驗,得到如下樣本數據(單位:km):13.7,12.7,14.4,13.8,13.3,12.5,13.5,13.6,13.1,13.4,其分組如下:

(1)

完成上面頻率分布表

(2)

根據上表,在給定坐標系中畫出頻率分布直線圖,并根據樣本估計總體數據落在[12.95,13.95)中的概率

(3)

根據樣本,對總體的期望值進行估計

查看答案和解析>>

用二分法求方程f(x)=0在區(qū)間[1,2]內的唯一實數解x0時,經計算得f(1)=
2
,f(2)=-2,f(
3
2
)=6
,則下列結論正確的是( 。

查看答案和解析>>

為了解某班學生喜愛打籃球是否與性別有關,對本班48人進行了問卷調查得到了如下的2×2列聯表:

 
喜愛打籃球
不喜愛打籃球
合計
男生
 
6
 
女生
10
 
 
合計
 
 
48
已知在全班48人中隨機抽取1人,抽到喜愛打籃球的學生的概率為.
(1)請將上面的2×2列聯表補充完整(不用寫計算過程);
(2)你是否有95%的把握認為喜愛打籃球與性別有關?說明你的理由;
(3)現從女生中抽取2人進一步調查,設其中喜愛打籃球的女生人數為X,求X的分布列與數學期望.
下面的臨界值表供參考:
P(χ2x0)或
P(K2k0)
0.10
0.05
0.010
0.005
x0(或k0)
2.706
3.841
6.635
7.879
 
(參考公式)χ2,其中nn11n12n21n22K2,其中nabcd)

查看答案和解析>>

為了解某班學生喜愛打籃球是否與性別有關,對本班48人進行了問卷調查得到了如下的2×2列聯表:

 

喜愛打籃球

不喜愛打籃球

合計

男生

 

6

 

女生

10

 

 

合計

 

 

48

已知在全班48人中隨機抽取1人,抽到喜愛打籃球的學生的概率為.

(1)請將上面的2×2列聯表補充完整(不用寫計算過程);

(2)你是否有95%的把握認為喜愛打籃球與性別有關?說明你的理由;

(3)現從女生中抽取2人進一步調查,設其中喜愛打籃球的女生人數為X,求X的分布列與數學期望.

下面的臨界值表供參考:

P(χ2x0)

P(K2k0)

0.10

0.05

0.010

0.005

x0(k0)

2.706

3.841

6.635

7.879

 

(參考公式)χ2,其中nn11n12n21n22K2,其中nabcd)

 

查看答案和解析>>

為了解某班學生喜愛打籃球是否與性別有關,對本班48人進行了問卷調查得到了如下的2×2列聯表:
 
喜愛打籃球
不喜愛打籃球
合計
男生
 
6
 
女生
10
 
 
合計
 
 
48
已知在全班48人中隨機抽取1人,抽到喜愛打籃球的學生的概率為.
(1)請將上面的2×2列聯表補充完整(不用寫計算過程);
(2)你是否有95%的把握認為喜愛打籃球與性別有關?說明你的理由;
(3)現從女生中抽取2人進一步調查,設其中喜愛打籃球的女生人數為X,求X的分布列與數學期望.
下面的臨界值表供參考:
P(χ2x0)或
P(K2k0)
0.10
0.05
0.010
0.005
x0(或k0)
2.706
3.841
6.635
7.879
 
(參考公式)χ2,其中nn11n12n21n22K2,其中nabcd)

查看答案和解析>>


同步練習冊答案