網(wǎng)[解](Ⅰ)∵學科網(wǎng) 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)f(x)=lnx,gx)=ax+,函數(shù)f(x)的圖像與x軸的交點也在函數(shù)g(x)的圖像上,且在此點處f(x)與g(x)有公切線.[來源:學?。網(wǎng)]

(Ⅰ)求a、b的值; 

(Ⅱ)設(shè)x>0,試比較f(x)與g(x)的大小.[來源:學,科,網(wǎng)Z,X,X,K]

【解析】第一問解:因為f(x)=lnxgx)=ax+

則其導數(shù)為

由題意得,

第二問,由(I)可知,令

,  …………8分

是(0,+∞)上的減函數(shù),而F(1)=0,            …………9分

∴當時,,有;當時,,有;當x=1時,,有

解:因為f(x)=lnx,gx)=ax+

則其導數(shù)為

由題意得,

(11)由(I)可知,令

,  …………8分

是(0,+∞)上的減函數(shù),而F(1)=0,            …………9分

∴當時,,有;當時,,有;當x=1時,,有

 

查看答案和解析>>

某校從參加高三年級第一學期期末考試的學生中抽出50名學生,并統(tǒng)計了他們的數(shù)學成績(成績均為整數(shù),滿分為100分),將數(shù)學成績進行分組并根據(jù)各組人數(shù)制成如下頻率分布表:

(Ⅰ)將上面的頻率分布表補充完整,并估計本次考試全校85分以上學生的比例;

(Ⅱ)為了幫助成績差的同學提高數(shù)學成績,學校決定成立“二幫一”小組,即從成績?yōu)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912284792138316/SYS201207091229178901869405_ST.files/image001.png">中任選出兩位同學,共同幫助成績在中的某一個同學,試列出所有基本事件;若同學成績?yōu)?3分,同學成績?yōu)?5分,求、兩同學恰好被安排在“二幫一”中同一小組的概率.

分 組

頻 數(shù)

頻 率[來源:學_科_網(wǎng)]

[40, 50 )

2

0.04

[ 50, 60 )

3

0.06

[ 60, 70 )

14

0.28

[ 70, 80 )

15

0.30

[ 80, 90 )

 

 

[ 90, 100 ]

4

0.08

合 計

 

 

 

 

 

 

 

 

 

 

 

 

【解析】第一問利用表格可知第五行以此填入  12   0.24

第七行以此填入  50   1   估計本次全校85分以上學生比例為32%

第二問中,設(shè)數(shù)學成績在[90,100]間的四個同學分別用字母B1,B2,B3,B4表示;被幫助的兩個同學為A1,A2出現(xiàn)的“二幫一”小組有A1B1B2;A1B1B3;A1B1B4;A1B2B3;A1B2B4;A1B3B4

A2B1B2;A2B1B3;A2B1B4;A2B2B3;A2B2B4;A2B3B4

A1、B1兩同學恰好被安排在“二幫一”中同一小組的有   A1B1B2;A1B1B3;A1B1B4

l利用古典概型概率得到。

(Ⅰ)第五行以此填入  12   0.24                ……………2分

第七行以此填入  50   1                  ……………4分

估計本次全校85分以上學生比例為32%                ……………6分

(Ⅱ)設(shè)數(shù)學成績在[90,100]間的四個同學分別用字母B1,B2,B3,B4表示;被幫助的兩個同學為A1,A2出現(xiàn)的“二幫一”小組有A1B1B2;A1B1B3;A1B1B4;A1B2B3;A1B2B4;A1B3B4

A2B1B2;A2B1B3;A2B1B4;A2B2B3;A2B2B4;A2B3B4

A1、B1兩同學恰好被安排在“二幫一”中同一小組的有   A1B1B2;A1B1B3;A1B1B4     

所以  A1、B1兩同學恰好被安排在“二幫一”中同一小組的概率為 3 /12 =1 /4

 

查看答案和解析>>


同步練習冊答案