在[1.+)上為增函數(shù).求a的范圍 查看更多

 

題目列表(包括答案和解析)

函數(shù)數(shù)學(xué)公式,其中a為常數(shù).
(1)證明:對任意a∈R,函數(shù)y=f(x)圖象恒過定點;
(2)當(dāng)a=1時,不等式f(x)+2b≤0在x∈(0,+∞)上有解,求實數(shù)b的取值范圍;
(3)若對任意a∈[m,0)時,函數(shù)y=f(x)在定義域上恒單調(diào)遞增,求m的最小值.

查看答案和解析>>

函數(shù),其中a為常數(shù).
(1)證明:對任意a∈R,函數(shù)y=f(x)圖象恒過定點;
(2)當(dāng)a=1時,不等式f(x)+2b≤0在x∈(0,+∞)上有解,求實數(shù)b的取值范圍;
(3)若對任意a∈[m,0)時,函數(shù)y=f(x)在定義域上恒單調(diào)遞增,求m的最小值.

查看答案和解析>>

函數(shù),其中a為常數(shù).
(1)證明:對任意a∈R,函數(shù)y=f(x)圖象恒過定點;
(2)當(dāng)a=1時,不等式f(x)+2b≤0在x∈(0,+∞)上有解,求實數(shù)b的取值范圍;
(3)若對任意a∈[m,0)時,函數(shù)y=f(x)在定義域上恒單調(diào)遞增,求m的最小值.

查看答案和解析>>

函數(shù),其中a為常數(shù).

(1)證明:對任意a∈R,y=f(x)的圖象恒過定點;

(2)當(dāng)a=-1時,判斷函數(shù)y=f(x)是否存在極值?若存在,求出極值;若不存在,說明理由;

(3)若對任意a∈(0,m]時,y=f(x)恒為定義域上的增函數(shù),求m的最大值.

查看答案和解析>>

函數(shù),其中a為常數(shù).

(1)證明:對任意a∈R,函數(shù)y=f(x)圖像恒過定點;

(2)當(dāng)a=1時,不等式f(x)+2b≤0在x∈(0,+∞)上有解,求實數(shù)b的取值范圍;

(3)若對任意a∈[m,0)時,函數(shù)y=f(x)在定義域上恒單調(diào)遞增,求m的最小值.

查看答案和解析>>

1.;   2.   2.   3.200   4. 3      5.  6.     7.

8.6  9.;  10.    11.1005    12.4    13.  1    14.

15.解: (1).如圖,,

      即

   (2).在中,由正弦定理得

    由(1)得,

    即

    

16.解:(Ⅰ) 在△PAC中,∵PA=3,AC=4,PC=5,

        ∴,∴;又AB=4,PB=5,∴在△PAB中,

       同理可得

       ∵,∴

      ∵平面ABC,∴PA⊥BC. 

(Ⅱ)  如圖所示取PC的中點G,

連結(jié)AG,BG,∵PF:FC=3:1,∴F為GC的中點

      又D、E分別為BC、AC的中點,

∴AG∥EF,BG∥FD,又AG∩GB=G,EF∩FD=F……………7分 

      ∴面ABG∥面DEF           

即PC上的中點G為所求的點                  …………… 9分

(Ⅲ)

17.解:(1)由題意得,  

整理得,解得, 

所以“學(xué)習(xí)曲線”的關(guān)系式為. 

(2)設(shè)從第個單位時間起的2個單位時間內(nèi)的平均學(xué)習(xí)效率為,則

 

,則,  

顯然當(dāng),即時,最大, 

代入,得,

所以,在從第3個單位時間起的2個單位時間內(nèi)的平均學(xué)習(xí)效率最高.

18. 解:(1)由題可得,,設(shè)

,……………………2分

,∵點在曲線上,則,∴,從而,得.則點P的坐標(biāo)為. ……………………5分

(2)由題意知,兩直線PA、PB的斜率必存在,設(shè)PB的斜率為,………6分

則BP的直線方程為:.由 ,設(shè),則,

同理可得,則. ………………9分

所以:AB的斜率為定值. ………………10分

(3)設(shè)AB的直線方程:.

,得

,得

P到AB的距離為,………………12分

。

當(dāng)且僅當(dāng)取等號

∴三角形PAB面積的最大值為!14分

 

19.解: (1)依題意有,于是.

所以數(shù)列是等差數(shù)列.                              .4分

(2)由題意得,即 , ()         ①

所以又有.                        ②   

由②①得:, 所以是常數(shù).       

都是等差數(shù)列.

,那么得    ,

.    (   

                              10分

(3) 當(dāng)為奇數(shù)時,,所以

當(dāng)為偶數(shù)時,所以       

軸,垂足為,要使等腰三角形為正三角形,必須且只須:.                             

當(dāng)為奇數(shù)時,有,即        ①

, 當(dāng)時,. 不合題意.                    

當(dāng)為偶數(shù)時,有 ,,同理可求得  .

;當(dāng)時,不合題意.

綜上所述,使等腰三角形中,有正三角形,的值為

;;16分

20⑴當(dāng)x≥1時,只需2+a≥0即a≥-2

⑵作差變形可得:

=  (*)

x1>0,x2>o  從而

∴l(xiāng)n,又a<0   ∴(*)式≥0

(當(dāng)且僅當(dāng)x1=x2時取“=”號)

 (3)可化為:

 x ∴l(xiāng)nx≤1≤x,因等號不能同時取到,∴l(xiāng)nx<x,lnx―x<0

∴a≥

, x ,

=

 x,∴l(xiāng)nx―1―<0,且1―x≤0

從而,,所以g(x)在x上遞增,從而=g(1)= ―

由題設(shè)a≥―

存在x,不等式f(x)≤(a+3)―能成立且a

21.A解(1)利用△CDO≌△BCM,可證MB=OC=AB

(2)由△PMB∽△BMC,得,∴BP=

B、設(shè)M=,則=8=,故

       =,故

聯(lián)立以上兩方程組解得a=6,b=2,c=4,d=4,故M=

C.求直線)被曲線所截的弦長,將方程,分別化為普通方程:

………(5分)

 D.解:由柯西不等式可得

 

22、解析:(1)記“”為事件A, ()的取值共有10種情況,…………1分

滿足的()的取值有以下4種情況:

(3,2),(4,2),(5,2),(5,4),

所以;

(2)隨機變量的取值為2,3,4,5,的分布列是

2

3

4

5

P

               …………10分

所以的期望為

23、解:(1)由

∵在數(shù)列,∴,∴

故數(shù)列中的任意一項都小于1

(2)由(1)知,那么

由此猜想:(n≥2).下面用數(shù)學(xué)歸納法證明:

①當(dāng)n=2時,顯然成立;

②當(dāng)n=k時(k≥2,k∈N)時,假設(shè)猜想正確,即,

那么,

∴當(dāng)n=k+1時,猜想也正確

綜上所述,對于一切,都有。

 

 

 


同步練習(xí)冊答案