2.第Ⅱ卷所有題目的答案考生需用黑色簽字筆答在“數(shù)學(xué) 答題卡上指定的位置上. 查看更多

 

題目列表(包括答案和解析)

(08年山東卷)(本小題滿分12分)

將數(shù)列中的所有項(xiàng)按每一行比上一行多一項(xiàng)的規(guī)則排成如下數(shù)表:

 

    

      

記表中的第一列數(shù)構(gòu)成的數(shù)列為為數(shù)列的前項(xiàng)和,且滿足

(Ⅰ)證明數(shù)列成等差數(shù)列,并求數(shù)列的通項(xiàng)公式;

(Ⅱ)上表中,若從第三行起,第一行中的數(shù)按從左到右的順序均構(gòu)成等比數(shù)列,且公比為同一個(gè)正數(shù).當(dāng)時(shí),求上表中第行所有項(xiàng)的和.

查看答案和解析>>

每小題選出答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其他答案標(biāo)號(hào),不能答在試題卷上。

一、選擇題:本大題共8小題,每小題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,選出符合題目要求的一項(xiàng).

1.設(shè)全集,,,則=

(A)          (B)      (C)       (D)

2.已知圓的方程為,那么下列直線中經(jīng)過(guò)圓心的直線方程為

(A)                  (B)

(C)                  (D)

查看答案和解析>>

選擇題每小題選出答案后,用2B鉛筆將答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào),答在試題卷上無(wú)效。

查看答案和解析>>

(本小題滿分14分)

將數(shù)列中的所有項(xiàng)按每一行比上一行多一項(xiàng)的規(guī)則排成如下數(shù)表:

 

    

      

………………………

記表中的第一列數(shù)構(gòu)成的數(shù)列為,為數(shù)列的前項(xiàng)和,且滿足

(1)證明:;

(2)求數(shù)列的通項(xiàng)公式;

(3)上表中,若從第三行起,每一行中的數(shù)按從左到右的順序均構(gòu)成等比數(shù)列,且公比為同一個(gè)正數(shù).當(dāng)時(shí),求上表中第行所有項(xiàng)的和.

 

查看答案和解析>>

將數(shù)列中的所有項(xiàng)按每一行比上一行多一項(xiàng)的規(guī)則排成下表:

  

      

          

……

記表中的第一列數(shù)、 、   、   ……構(gòu)成的數(shù)列為,為數(shù)列的前項(xiàng)和,且滿足

(I)證明數(shù)列成等差數(shù)列,并求數(shù)列的通項(xiàng)公式;

(II)上表中,若從第三行起,每一行中的數(shù)從左到右的順序均構(gòu)成等比數(shù)列,且公比為同一個(gè)正數(shù),當(dāng)時(shí),求上表中第行所有項(xiàng)的和

查看答案和解析>>

 

一、選擇題:本題考查基本知識(shí)和基本運(yùn)算,每小題5分,共60分.

  • 20080528

    二、填空題:本題考查基本知識(shí)和基本運(yùn)算,每小題4分,共16分.

    13.  14.  15.  16.

    三、解答題:本大題共6小題,共74分.

    17.解:……4分

       (1)由題知…………………………………………………6分

       (2)由(1)的條件下

          

           由,……………………………………………8分

           得的圖象的對(duì)稱軸是

           則

           ……………………………………………………10分

           又…………………………………………………12分

    18.解:(1)ξ的取值為0、1、2、3、4.

          

           ξ的分布列為

           ξ

    0

    1

    2

    3

    4

    P

           ∴Eξ=+×2+×3+×4=…………………………………………7分

       (2)

           …………………………………9分

           ………………………11分

           的最大值為2.……………………………………………………12分

    19.解:由三視圖可知三棱柱A1B1C1ABC為直三棱柱,側(cè)梭長(zhǎng)為2,底面是等腰直角三角

    形,AC=BC=1.…………2分

    <center id="fad1s"></center>

           則C(0,0,0),C1(0,0,2),

           A(1,0,0),B1(0,1,2),A1(1,0,2)

           MA1B1中點(diǎn),

           …………………………4分

       (1)

           ……………………6分

           ∥面AC1M,又∵B1CAC1M,

           ∴B1C∥面AC1M.…………………………8分

       (2)設(shè)平面AC1M的一個(gè)法向量為

          

          

           …………………………………………………………10分

          

           則…………………………12分

    20.解:(1)………………2分

           的等差中項(xiàng),

          

           解得q=2或(舍去),………………………………………………4分

           ………………5分

       (2)由(1)得,

           當(dāng)n=1時(shí),A1=2,B1=(1+1)2=4,A1<B1;

           當(dāng)n=2時(shí),A2=6,B2=(2+1)2=9,A2<B2;

           當(dāng)n=3時(shí),A3=14,B3=(3+1)2=16,A3<B3;

           當(dāng)n=4時(shí),A4=30,B4=(4+1)2=25,A4>B4;

           由上可猜想,當(dāng)1≤n≤3時(shí),An<Bn;當(dāng)n≥4時(shí),An>Bn.……………………8分

           下面用數(shù)學(xué)歸納法給出證明:

           ①當(dāng)n=4時(shí),已驗(yàn)證不等式成立.

           ②假設(shè)n=kk≥4)時(shí),Ak>Bk.成立,即,

          

           即當(dāng)n=k+1時(shí)不等式也成立,

           由①②知,當(dāng)

           綜上,當(dāng)時(shí),An<Bn;當(dāng)

     

     

    21.解:(1)設(shè).

           由題意得……………………2分

           ∵m>1,∴軌跡C是中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上的橢圓(除去x軸上的兩項(xiàng)點(diǎn)),其

    中長(zhǎng)軸長(zhǎng)為2,短軸長(zhǎng)為2.………………………………………………4分

       (2)當(dāng)m=時(shí),曲線C的方程為

           由………………6分

           令

           此時(shí)直線l與曲線C有且只有一個(gè)公共點(diǎn).………………………………8分

       (3)直線l方程為2x-y+3=0.

           設(shè)點(diǎn)表示P到點(diǎn)(1,0)的距離,d2表示P到直線x=2的距離,

           則

           …………………………10分

           令

           則

           令……………………………………………………12分

          

          

           ∴的最小值等于橢圓的離心率.……………………………………14分

    22.(1)由已知

          

          

           …………………………………………………………2分

           又當(dāng)a=8時(shí),

          

           上單調(diào)遞減.……………………………………………………4分

       (2)

          

           ……………………6分

          

          

          

          

          

    ………………………………………………8分

       (3)設(shè)

           且

           由(1)知

          

           ∴△ABC為鈍角三角形,且∠B為鈍角.…………………………………………11分

           若△ABC為等腰三角形,則|AB|=|BC|,

          

          

           此與(2)矛盾,

           ∴△ABC不可能為等腰三角形.………………………………………………14分

     

     


    同步練習(xí)冊(cè)答案