拋物線y2=4x關(guān)于直線x=2對(duì)稱的拋物線方程為-----------------(A) y2=-4(x-4) (B) y2=-4(x+4) (C)y2=4(x-4) (D) y2=4(x+4) 查看更多

 

題目列表(包括答案和解析)

已知拋物線y2=4x的焦點(diǎn)為F2,點(diǎn)F1與F2關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,直線m垂直于x軸,垂足為T,與拋物線交于不同的兩點(diǎn)P、Q且
F1P
F2Q
=-5

(1)求點(diǎn)T的橫坐標(biāo)x0;
(2)若以F1,F(xiàn)2為焦點(diǎn)的橢圓C過(guò)點(diǎn)(1,
2
2
)

①求橢圓C的標(biāo)準(zhǔn)方程;
②過(guò)點(diǎn)F2作直線l與橢圓C交于A,B兩點(diǎn),求|
TA
+
TB
|
的取值范圍.

查看答案和解析>>

拋物線C:y2=-4x關(guān)于直線x+y=2的對(duì)稱曲線C1的焦點(diǎn)坐標(biāo)為


  1. A.
    (1,0)
  2. B.
    (2,2)
  3. C.
    (2,1)
  4. D.
    (2,3)

查看答案和解析>>

已知拋物線C:y2=4x,P(x0,y0)(y0>0)為拋物線上一點(diǎn),Q為P關(guān)于x軸對(duì)稱的點(diǎn),O為坐標(biāo)原點(diǎn).
(1)若S△POQ=2,求P點(diǎn)的坐標(biāo);
(2)若過(guò)滿足(1)中的點(diǎn)P作直線PA,PB交拋物線C于A,B兩點(diǎn),且斜率分別為k1,k2,且k1k2=4,求證:直線AB過(guò)定點(diǎn),并求出該定點(diǎn)坐標(biāo).

查看答案和解析>>

已知拋物線C:y2=4x,過(guò)點(diǎn)A(x0,0)(其中x0為常數(shù),且x0>0)作直線l交拋物線于P,Q(點(diǎn)P在第一象限);
(1)設(shè)點(diǎn)Q關(guān)于x軸的對(duì)稱點(diǎn)為D,直線DP交x軸于點(diǎn)B,求證:B為定點(diǎn);
(2)若x0=1,M1,M2,M3為拋物線C上的三點(diǎn),且△M1M2M3的重心為A,求線段M2M3所在直線的斜率的取值范圍.

查看答案和解析>>

已知拋物線C:y2=4x,P(x0,y0)(y0>0)為拋物線上一點(diǎn),Q為P關(guān)于x軸對(duì)稱的點(diǎn),O為坐標(biāo)原點(diǎn).
(1)若S△POQ=2,求P點(diǎn)的坐標(biāo);
(2)若過(guò)滿足(1)中的點(diǎn)P作直線PA,PB交拋物線C于A,B兩點(diǎn),且斜率分別為k1,k2,且k1k2=4,求證:直線AB過(guò)定點(diǎn),并求出該定點(diǎn)坐標(biāo).

查看答案和解析>>


同步練習(xí)冊(cè)答案