證明不等式:(提示:使用放縮法) 查看更多

 

題目列表(包括答案和解析)

已知f(n)=1+
1
2
+
1
3
+…+
1
n
 (n∈N*),用數(shù)學(xué)歸納法證明不等式f(2n)>
n
2
時(shí),f(2k+1)比f(wàn)(2k)多的項(xiàng)數(shù)是
2k
2k

查看答案和解析>>

(2012•濟(jì)南三模)設(shè)函數(shù)f(x)=x2-2(-1)klnx(k∈N*),f(x)表示f(x)導(dǎo)函數(shù).
(I)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)k為偶數(shù)時(shí),數(shù)列{an}滿足a1=1,anf(an)
=a
2
n+1
-3
.證明:數(shù)列{
a
2
n
}中不存在成等差數(shù)列的三項(xiàng);
(Ⅲ)當(dāng)k為奇數(shù)時(shí),設(shè)bn=
1
2
f
(n)-n
,數(shù)列{bn}的前n項(xiàng)和為Sn,證明不等式(1+bn)
1
bn+1
e對(duì)一切正整數(shù)n均成立,并比較S2012-1與ln2012的大。

查看答案和解析>>

設(shè)f(x)=lnx-
x-a
x
(其中a>0),g(x)=2(x-1)-(x2+1)lnx

(1)當(dāng)x∈[1,+∞)時(shí),判斷函數(shù)g(x)的單調(diào)性;
(2)已知f(x)和g(x)在[1,+∞)上單調(diào)性一致,求a的取值范圍;
(3)設(shè)b>1,證明不等式
2
1+b2
lnb
b-1
1
b

查看答案和解析>>

用數(shù)學(xué)歸納法證明不等式:
1
n
+
1
n+1
+
1
n+2
+…+
1
n2
>1(n∈N*且n>1).

查看答案和解析>>

已知函數(shù)f(x)=-x3-2mx2-m2x+1-m(其中m>-2)在點(diǎn)x=1處取得極值.
(1)求實(shí)數(shù)m的值;
(2)求函數(shù)f(x)在區(qū)間[0,1]上的最小值;
(3)若a≥0,b≥0,c≥0,且a+b+c=1,證明不等式
a
1+a2
+
b
1+b2
+
c
1+c2
9
10

查看答案和解析>>


同步練習(xí)冊(cè)答案