推理:要證a<b.只要證a2<b2 對(duì)嗎? 查看更多

 

題目列表(包括答案和解析)

已知集合A={a1,a2,…,an}中的元素都是正整數(shù),且a1<a2<…<an,對(duì)任意的x,y∈A,且x≠y,都有|x-y| ≥
xy
36

(1)求證:
1
a1
-
1
an
n-1
36
;(提示:可先求證
1
ai
-
1
ai+1
1
36
(i=1,2,…,n-1),然后再完成所要證的結(jié)論.)
(2)求證:n≤11;
(3)對(duì)于n=11,試給出一個(gè)滿(mǎn)足條件的集合A.

查看答案和解析>>

要證:a2+b2-1-a2b2≤0,只要證明(  )
A、2ab-1-a2b2≤0
B、a2+b2-1-
a4+b4
2
≤0
C、
a+b2
2
-1-a2b2≤0
D、(a2-1)(b2-1)≥0

查看答案和解析>>

3、分析法是從要證的不等式出發(fā),尋求使它成立的( 。

查看答案和解析>>

如圖SA⊥平面ABC,AB⊥BC,過(guò)A做SB的垂線(xiàn),垂足為E,過(guò)E做SC的垂線(xiàn),垂足為F,求證AF⊥SC.以下是證明過(guò)程:
要證AF⊥SC
只需證  SC⊥平面AEF
只需證  AE⊥SC(因?yàn)镋F⊥SC)
只需證  AE⊥平面SBC
只需證
(因?yàn)锳E⊥SB)
只需證  BC⊥平面SAB
只需證
(因?yàn)锳B⊥BC)
由只需證  SA⊥平面ABC可知上式成立
所以AF⊥SC
把證明過(guò)程補(bǔ)充完整①
AE⊥BC
AE⊥BC
BC⊥SA
BC⊥SA

查看答案和解析>>

以下說(shuō)法正確的是
③④
③④

①lg9•lg11>1.
②用數(shù)學(xué)歸納法證明“1+a+a2+…+an+1=
1-an+21-a
(n∈N*,a≠1)
”在驗(yàn)證n=1時(shí),左邊=1.
③已知f(x)是R上的增函數(shù),a,b∈R,則f(a)+f(b)≥f(-a)+f(-b)的充要條件是a+b≥0.
④用分析法證明不等式的思維是從要證的不等式出發(fā),逐步尋找使它成立的充分條件.

查看答案和解析>>


同步練習(xí)冊(cè)答案