證:設(shè)交于一點(diǎn)., 查看更多

 

題目列表(包括答案和解析)

設(shè)m∈R,在平面直角坐標(biāo)系中,已知向量a=(mx,y+1),向量b=(x,y-1),a⊥b,動(dòng)點(diǎn)M(x,y)的軌跡為E.
(Ⅰ)求軌跡E的方程,并說(shuō)明該方程所表示曲線的形狀;
(Ⅱ)已知m=
1
4
.證明:存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與軌跡E恒有兩個(gè)交點(diǎn)A,B,且OA⊥OB(O為坐標(biāo)原點(diǎn)),并求該圓的方程;
(Ⅲ)已知m=
1
4
.設(shè)直線l與圓C:x2+y2=R2(1<R<2)相切于A1,且l與軌跡E只有一個(gè)公共點(diǎn)B1.當(dāng)R為何值時(shí),|A1B1|取得最大值?并求最大值.

查看答案和解析>>

設(shè)m∈R,在平面直角坐標(biāo)系中,已知向量a=(mx,y+1),向量b=(x,y-1),a⊥b,動(dòng)點(diǎn)M(x,y)的軌跡為E.
(Ⅰ)求軌跡E的方程,并說(shuō)明該方程所表示曲線的形狀;
(Ⅱ)已知m=.證明:存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與軌跡E恒有兩個(gè)交點(diǎn)A,B,且OA⊥OB(O為坐標(biāo)原點(diǎn)),并求該圓的方程;
(Ⅲ)已知m=.設(shè)直線l與圓C:x2+y2=R2(1<R<2)相切于A1,且l與軌跡E只有一個(gè)公共點(diǎn)B1.當(dāng)R為何值時(shí),|A1B1|取得最大值?并求最大值.

查看答案和解析>>

設(shè)m∈R,在平面直角坐標(biāo)系中,已知向量a=(mx,y+1),向量b=(x,y-1),a⊥b,動(dòng)點(diǎn)M(x,y)的軌跡為E.
(Ⅰ)求軌跡E的方程,并說(shuō)明該方程所表示曲線的形狀;
(Ⅱ)已知m=.證明:存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與軌跡E恒有兩個(gè)交點(diǎn)A,B,且OA⊥OB(O為坐標(biāo)原點(diǎn)),并求該圓的方程;
(Ⅲ)已知m=.設(shè)直線l與圓C:x2+y2=R2(1<R<2)相切于A1,且l與軌跡E只有一個(gè)公共點(diǎn)B1.當(dāng)R為何值時(shí),|A1B1|取得最大值?并求最大值.

查看答案和解析>>

設(shè)m∈R,在平面直角坐標(biāo)系中,已知向量a=(mx,y+1),向量b=(x,y-1),a⊥b,動(dòng)點(diǎn)M(x,y)的軌跡為E.
(Ⅰ)求軌跡E的方程,并說(shuō)明該方程所表示曲線的形狀;
(Ⅱ)已知m=.證明:存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與軌跡E恒有兩個(gè)交點(diǎn)A,B,且OA⊥OB(O為坐標(biāo)原點(diǎn)),并求該圓的方程;
(Ⅲ)已知m=.設(shè)直線l與圓C:x2+y2=R2(1<R<2)相切于A1,且l與軌跡E只有一個(gè)公共點(diǎn)B1.當(dāng)R為何值時(shí),|A1B1|取得最大值?并求最大值.

查看答案和解析>>

設(shè)m∈R,在平面直角坐標(biāo)系中,已知向量a=(mx,y+1),向量b=(x,y-1),a⊥b,動(dòng)點(diǎn)M(x,y)的軌跡為E.
(Ⅰ)求軌跡E的方程,并說(shuō)明該方程所表示曲線的形狀;
(Ⅱ)已知m=.證明:存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與軌跡E恒有兩個(gè)交點(diǎn)A,B,且OA⊥OB(O為坐標(biāo)原點(diǎn)),并求該圓的方程;
(Ⅲ)已知m=.設(shè)直線l與圓C:x2+y2=R2(1<R<2)相切于A1,且l與軌跡E只有一個(gè)公共點(diǎn)B1.當(dāng)R為何值時(shí),|A1B1|取得最大值?并求最大值.

查看答案和解析>>


同步練習(xí)冊(cè)答案