題目列表(包括答案和解析)
設(shè)的最大值為M。
(1)當時,求M的值。
(2)當取遍所有實數(shù)時,求M的最小值;
(以下結(jié)論可供參考:對于,當同號時取等號)
(3)對于第(2)小題中的,設(shè)數(shù)列滿足,求證:。
已知函數(shù)的最小值為0,其中
(Ⅰ)求的值;
(Ⅱ)若對任意的有≤成立,求實數(shù)的最小值;
(Ⅲ)證明().
【解析】(1)解: 的定義域為
由,得
當x變化時,,的變化情況如下表:
x |
|||
- |
0 |
+ |
|
極小值 |
因此,在處取得最小值,故由題意,所以
(2)解:當時,取,有,故時不合題意.當時,令,即
令,得
①當時,,在上恒成立。因此在上單調(diào)遞減.從而對于任意的,總有,即在上恒成立,故符合題意.
②當時,,對于,,故在上單調(diào)遞增.因此當取時,,即不成立.
故不合題意.
綜上,k的最小值為.
(3)證明:當n=1時,不等式左邊==右邊,所以不等式成立.
當時,
在(2)中取,得 ,
從而
所以有
綜上,,
(12分)已知
(1)當x為何值時,取得最小值?證明你的結(jié)論;
(2)設(shè)f(x)在[-1,1]上是單調(diào)函數(shù),求a的取值范圍。
一、選擇題(本大題共10小題,每題5分,共50分)
1.C 2.A 3.B 4.D 5.B
6.B 7.C 8.D 9.D 10.A
二、填空題(本大題共7小題,每題4分,共28分)
11.2 12.45 13. 14.
15.1 16.144 17.
三、解答題(本大題共5小題,第18―20題各14分,第21、22題各15分,共72分)
18.(1)因為(4分)
所以
(Ⅱ)由(I)得,
(10分)
因為所以,所以(12分)
因此,函數(shù)的值域為。(14分)
19.(I)因為,所以平面。 (3分)
又因為平面所以 ①(5分)
在中,,由余弦定理,
得
因為,所以,即。② (7分)
由①,②及,可得平面 (8分)
(Ⅱ)方法一;
在中,過作于,則,所以平面
在中,過作于,連,則平面,
所以為二面角的平面角 (11分)
在中,求得,
在中,求得,
所以所以。
因此,所求二面角的大小的余弦值為。
方法二:
如圖建立空間直角坐標系 (9分)
則
設(shè)平面的法向量為,
則
所以,取,
則 (11分)
又設(shè)平面的法向量為,
則
,取,則(13分)
所以,
因此,所求二面角的大小余弦值為。
20.(I)(6分)
(Ⅱ)
1
2
3
4
5
(14分)
21.(I)由題意得 (3分)
解得(5分)
所以橢圓方程為 (6分)
(Ⅱ)直線方程為,則的坐標為 (7分)
設(shè)則,
直線方程為令,得的橫坐標為
① (10分)
又得得, (12分)
代入①得, (14分)
得, 為常數(shù)4 (15分)
22.(I) (2分)
由于,故嘗時,,所以, (4分)
故函數(shù)在上單調(diào)遞增。 (5分)
(Ⅱ)令,得到 (6分)
的變化情況表如下: (8分)
0
一
0
+
極小值
因為函數(shù) 有三個零點,所以有三個根,
有因為當時,,
所以,故 (10分)
(Ⅲ)由(Ⅱ)可知在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增。
所以 (11分)
記則(僅在時取到等號),
所以遞增,故,
所以 (13分)
于是
故對
,所以 (15分)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com