題目列表(包括答案和解析)
設(shè)的最大值為M。
(1)當(dāng)時(shí),求M的值。
(2)當(dāng)取遍所有實(shí)數(shù)時(shí),求M的最小值
;
(以下結(jié)論可供參考:對于,當(dāng)
同號時(shí)取等號)
(3)對于第(2)小題中的,設(shè)數(shù)列
滿足
,求證:
。
已知函數(shù)的最小值為0,其中
(Ⅰ)求的值;
(Ⅱ)若對任意的有
≤
成立,求實(shí)數(shù)
的最小值;
(Ⅲ)證明(
).
【解析】(1)解:
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118530600520067_ST.files/image010.png">
由,得
當(dāng)x變化時(shí),,
的變化情況如下表:
x |
|
|
|
|
- |
0 |
+ |
|
|
極小值 |
|
因此,在
處取得最小值,故由題意
,所以
(2)解:當(dāng)時(shí),取
,有
,故
時(shí)不合題意.當(dāng)
時(shí),令
,即
令,得
①當(dāng)時(shí),
,
在
上恒成立。因此
在
上單調(diào)遞減.從而對于任意的
,總有
,即
在
上恒成立,故
符合題意.
②當(dāng)時(shí),
,對于
,
,故
在
上單調(diào)遞增.因此當(dāng)取
時(shí),
,即
不成立.
故不合題意.
綜上,k的最小值為.
(3)證明:當(dāng)n=1時(shí),不等式左邊==右邊,所以不等式成立.
當(dāng)時(shí),
在(2)中取,得
,
從而
所以有
綜上,,
(12分)已知
(1)當(dāng)x為何值時(shí),取得最小值?證明你的結(jié)論;
(2)設(shè)f(x)在[-1,1]上是單調(diào)函數(shù),求a的取值范圍。
一、選擇題(本大題共10小題,每題5分,共50分)
1.C 2.A 3.B 4.D 5.B
6.B 7.C 8.D 9.D 10.A
二、填空題(本大題共7小題,每題4分,共28分)
11.2 12.45 13. 14.
15.1 16.144 17.
三、解答題(本大題共5小題,第18―20題各14分,第21、22題各15分,共72分)
18.(1)因?yàn)?sub>(4分)
所以
(Ⅱ)由(I)得,
(10分)
因?yàn)?sub>所以
,所以
(12分)
因此,函數(shù)的值域?yàn)?sub>
。(14分)
19.(I)因?yàn)?sub>,所以
平面
。 (3分)
又因?yàn)?sub>平面
所以
①(5分)
在中,
,由余弦定理,
得
因?yàn)?sub>,所以
,即
。② (7分)
由①,②及,可得
平面
(8分)
(Ⅱ)方法一;
在中,過
作
于
,則
,所以
平面
在中,過
作
于
,連
,則
平面
,
所以
為二面角
的平面角 (11分)
在中,求得
,
在中,求得
,
所以所以
。
因此,所求二面角的大小的余弦值為
。
方法二:
如圖建立空間直角坐標(biāo)系 (9分)
則
設(shè)平面
的法向量為
,
則
所以,取
,
則 (11分)
又設(shè)平面的法向量為
,
則
,取
,則
(13分)
所以,
因此,所求二面角的大小余弦值為
。
20.(I)(6分)
(Ⅱ)
1
2
3
4
5
(14分)
21.(I)由題意得 (3分)
解得(5分)
所以橢圓方程為 (6分)
(Ⅱ)直線方程為
,則
的坐標(biāo)為
(7分)
設(shè)則
,
直線方程為
令
,得
的橫坐標(biāo)為
① (10分)
又得
得
, (12分)
代入①得, (14分)
得,
為常數(shù)4 (15分)
22.(I) (2分)
由于,故嘗
時(shí),
,所以
, (4分)
故函數(shù)在
上單調(diào)遞增。 (5分)
(Ⅱ)令,得到
(6分)
的變化情況表如下: (8分)
0
一
0
+
極小值
因?yàn)楹瘮?shù) 有三個(gè)零點(diǎn),所以
有三個(gè)根,
有因?yàn)楫?dāng)時(shí),
,
所以,故
(10分)
(Ⅲ)由(Ⅱ)可知在區(qū)間
上單調(diào)遞減,在區(qū)間
上單調(diào)遞增。
所以 (11分)
記則
(僅在
時(shí)取到等號),
所以遞增,故
,
所以 (13分)
于是
故對
,所以
(15分)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com