C. D. 查看更多

 

題目列表(包括答案和解析)

C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時(shí),求直線與圓O公共點(diǎn)的一個(gè)極坐標(biāo).
D.選修4-5:不等式證明選講
對(duì)于任意實(shí)數(shù),不等式恒成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時(shí),求直線與圓O公共點(diǎn)的一個(gè)極坐標(biāo).
D.選修4-5:不等式證明選講
對(duì)于任意實(shí)數(shù),不等式恒成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

C

[解析] 由基本不等式,得abab,所以ab,故B錯(cuò);≥4,故A錯(cuò);由基本不等式得,即,故C正確;a2b2=(ab)2-2ab=1-2ab≥1-2×,故D錯(cuò).故選C.

查看答案和解析>>

定義域?yàn)?/span>R的函數(shù)滿足,且當(dāng)時(shí),,則當(dāng)時(shí),的最小值為( )

A B C D

 

查看答案和解析>>

.過點(diǎn)作圓的弦,其中弦長(zhǎng)為整數(shù)的共有  ( 。    

A.16條          B. 17條        C. 32條            D. 34條

 

查看答案和解析>>

一、選擇題(本大題共10小題,每題5分,共50分)

1.C         2.A        3.B        4.D           5.B

6.B         7.C        8.D        9.D          10.A

二、填空題(本大題共7小題,每題4分,共28分)

11.2        12.45        13.       14.

15.1        16.144       17.

三、解答題(本大題共5小題,第18―20題各14分,第21、22題各15分,共72分)

18.(1)因?yàn)?sub>(4分)

        所以

   (Ⅱ)由(I)得,

                         (10分)

         因?yàn)?sub>所以,所以(12分)

         因此,函數(shù)的值域?yàn)?sub>。(14分)

 

19.(I)因?yàn)?sub>,所以平面。 (3分)

又因?yàn)?sub>平面所以    ①(5分)

中,,由余弦定理,

因?yàn)?sub>,所以,即。②  (7分)

由①,②及,可得平面   (8分)

(Ⅱ)方法一;

中,過,則,所以平面

中,過,連,則平面,

所以為二面角的平面角   (11分)

中,求得,

中,求得,

所以所以。

因此,所求二面角的大小的余弦值為。

方法二:

如圖建立空間直角坐標(biāo)系 (9分)

www.ks5u.com設(shè)平面的法向量為

所以,取

  (11分)

又設(shè)平面的法向量為,

,取,則(13分)

所以,

因此,所求二面角的大小余弦值為。

 

20.(I)(6分)

   (Ⅱ)

        

        

1

2

3

4

5

                    

 

 

 

 

 

       (14分)

 

21.(I)由題意得    (3分)

     解得(5分)

     所以橢圓方程為   (6分)

(Ⅱ)直線方程為,則的坐標(biāo)為  (7分)

設(shè)

直線方程為,得的橫坐標(biāo)為

①    (10分)

, (12分)

代入①得, (14分)

,       為常數(shù)4   (15分)

 

22.(I)   (2分)

     由于,故嘗時(shí),,所以,   (4分)

     故函數(shù)上單調(diào)遞增。   (5分)

   (Ⅱ)令,得到   (6分)

     的變化情況表如下:   (8分)

0

0

+

極小值

      因?yàn)楹瘮?shù) 有三個(gè)零點(diǎn),所以有三個(gè)根,

      有因?yàn)楫?dāng)時(shí),

      所以,故   (10分)

   (Ⅲ)由(Ⅱ)可知在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增。

     所以    (11分)

    

    

     記(僅在時(shí)取到等號(hào)),

     所以遞增,故

     所以    (13分)

     于是

     故對(duì)

     ,所以   (15分)

 


同步練習(xí)冊(cè)答案