2.已知命題所有的有理數(shù)都是實(shí)數(shù).命題正數(shù)的對(duì)數(shù)都是負(fù)數(shù).則下列命題中為真的是 查看更多

 

題目列表(包括答案和解析)

已知命題所有的有理數(shù)都是實(shí)數(shù),命題正數(shù)的對(duì)數(shù)都是負(fù)數(shù),則下列命題中為真的是                                   

A.               B.                   C.        D.

查看答案和解析>>

已知命題p:所有有理數(shù)都是實(shí)數(shù),命題q:正數(shù)的對(duì)數(shù)都是負(fù)數(shù),則下列命題中為真命題的是( )

A .(    B.      C.   D. 

 

查看答案和解析>>

已知命題:所有有理數(shù)都是實(shí)數(shù);命題:正數(shù)的對(duì)數(shù)都是負(fù)數(shù),則下列命題中為真命題的是(    )

A.(¬p)∨q                             B.(¬p)∨(¬q)

C.(¬p)∧(¬q)                            D.p∧q

 

查看答案和解析>>

已知命題:所有有理數(shù)都是實(shí)數(shù);命題:正數(shù)的對(duì)數(shù)都是負(fù)數(shù),則下列命題中為真命題的是(   )

A.(¬p)∨q   B.(¬p)∨(¬q)
C.(¬p)∧(¬q) D.p∧q

查看答案和解析>>

已知命題:所有有理數(shù)都是實(shí)數(shù);命題:正數(shù)的對(duì)數(shù)都是負(fù)數(shù),則下列命題中為真命題的是(   )
A.(¬p)∨q  B.(¬p)∨(¬q)
C.(¬p)∧(¬q)D.p∧q

查看答案和解析>>

一.選擇題

題號(hào)

10

11

12

答案

C

C

A

D

C

B

A

D

D

A

二.13.      14.      15.     16.(萬(wàn)元)

三.17.(I) 由

代入 得:     

整理得:                  (5分)

(II)由 

        由余弦定理得:

       -----------------------------   (9分)

  

       ------   (12分)

18.(Ⅰ)  的分布列.   

   2

   3

   4

   5

    6

p

 

 

                                - --------- ------   (4分)

(Ⅱ)設(shè)擲出的兩枚骰子的點(diǎn)數(shù)同是為事件

     同擲出1的概率,同擲出2的概率,同擲出3的概率

所以,擲出的兩枚骰子的點(diǎn)數(shù)相同的概率為P= 。ǎ阜郑

(Ⅲ)

時(shí))

 

 。

  3

  4

  5 

 。

 

   3

   6

    6

   6

    6

 p

   

 

 

 

 

時(shí))

 

 。

  3

  4

  5 

 。

 

   2

   5

    8

   8

    8

 p

   

 

 

 

 

時(shí))

 

 。

  3

  4

  5 

 。

 

   1

   4

    7

  10

    10

 p

   

 

 

 

 

時(shí), 最大為                             (12分)

19.(Ⅰ)

   

    兩兩相互垂直, 連結(jié)并延長(zhǎng)交于F.

   

 

    同理可得

  

  

  

          ------------  (6分)

(Ⅱ)的重心

    F是SB的中點(diǎn)

  

  

   梯形的高

        ---     (12分)

       【注】可以用空間向量的方法

20.設(shè)2,f (a1),  f (a2),  f (a3), …,f (an),  2n+4的公差為d,則2n+4=2+(n+2-1)d   d=2,

 

……………………(4分)

   (2)

 

       --------------------              (8分)

 

21.(Ⅰ)∵直線的斜率為1,拋物線的焦點(diǎn) 

    ∴直線的方程為

   由

  設(shè)

  則

  又

       

  故 夾角的余弦值為    -----------------  。ǎ斗郑

(Ⅱ)由

  即得:

  由 

從而得直線的方程為

 ∴軸上截距為

  ∵的減函數(shù)

∴  從而得

軸上截距的范圍是  ------------ (12分)

22.(Ⅰ) 

    在直線上,

                ??????????????      (4分)

(Ⅱ)

 上是增函數(shù),上恒成立

 所以得         ???????????????  (8分)

(Ⅲ)的定義域是,

①當(dāng)時(shí),上單增,且無(wú)解;

、诋(dāng)時(shí),上是增函數(shù),且,

有唯一解;

③當(dāng)時(shí),

那么在單減,在單增,

    時(shí),無(wú)解;

     時(shí),有唯一解 ;

     時(shí),

     那么在上,有唯一解

而在上,設(shè)

  

即得在上,有唯一解.

綜合①②③得:時(shí),有唯一解;

        時(shí),無(wú)解;

       時(shí),有且只有二解.

 

               ??????????????    。ǎ保捶郑

 


同步練習(xí)冊(cè)答案