的條件下P點的橫坐標.點N在y軸上.且|PN|等于點P到直線的距離.圓M能覆蓋三角形APN.當圓M的面積最小時.求圓M的方程. 查看更多

 

題目列表(包括答案和解析)

已知點P在曲線C:y=(x>1)上,設(shè)曲線C在點P處的切線為l,若l與函數(shù)y=kx(k>0)的圖像交于點A,與X軸相交于B點,設(shè)點P的橫坐標為t,設(shè)A,B的橫坐標分別為xA,xB,記f(t)=xA·xB

(1)求函數(shù)f(t)的解析式

(2)設(shè)數(shù)列{an}(n≥1,n∈N)滿足a1=1,an=f()(n≥2),設(shè)數(shù)列{bn}(n≥1,n∈N,滿足bn,求{an}和{bn}的通項公式

(3)在(2)的條件下,當1<k<3時,證明不等式a1+a2+a3…+an

查看答案和解析>>

己知函數(shù)f(x)=log3
3
x
1-x
,M(x1,y1),N(x2y2)
是f(x)圖象點的兩點,橫坐標為
1
2
的點P是M,N的中點.
(1)求證:y1+y2的定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)(n∈N*,n≥2)
,an=
1
6
,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*)
,Tn為數(shù)列{an}前n項和,當Tn<m(Sn+1+1)對一切n∈N*都成立時,試求實數(shù)m的取值范圍.
(3)在(2)的條件下,設(shè)bn=
1
4(Sn+1+1)(Sn+2+1)+1
,Bn為數(shù)列{bn}前n項和,證明:Bn
17
52

查看答案和解析>>

已知f(x)=
1
4x+2
(x∈R)
,P1(x1,y1)、P2(x2,y2)是函數(shù)y=f(x)圖象上兩點,且線段P1P2中點P的橫坐標是
1
2

(1)求證點P的縱坐標是定值; 
(2)若數(shù)列{an}的通項公式是an=f(
n
m
)
(m∈N*),n=1,2…m),求數(shù)列{an}的前m項和Sm; 
(3)在(2)的條件下,若m∈N*時,不等式
am
Sm
am+1
Sm+1
恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

已知點P在曲線C:y=(x>1)上,設(shè)曲線C在點P處的切線為l,若l與函數(shù)y=kx(k>0)的圖象的交點為A,與x軸的交點為B,設(shè)點P的橫坐標為t,A、B的橫坐標分別為xA、xB,記f(t)=xA•xB
(Ⅰ)求f(t)的解析式;
(Ⅱ)設(shè)數(shù)列{an}(n≥1,n∈N)滿足a1=1,an=(n≥2),數(shù)列{bn}滿足bn=,求an與bn;
(Ⅲ)在(Ⅱ)的條件下,當1<k<3時,證明不等式:a1+a2+…+an

查看答案和解析>>

已知點P在曲線C:y=(x>1)上,設(shè)曲線C在點P處的切線為l,若l與函數(shù)y=kx(k>0)的圖象的交點為A,與x軸的交點為B,設(shè)點P的橫坐標為t,A、B的橫坐標分別為xA、xB,記f(t)=xA•xB
(Ⅰ)求f(t)的解析式;
(Ⅱ)設(shè)數(shù)列{an}(n≥1,n∈N)滿足a1=1,an=(n≥2),數(shù)列{bn}滿足bn=,求an與bn;
(Ⅲ)在(Ⅱ)的條件下,當1<k<3時,證明不等式:a1+a2+…+an

查看答案和解析>>


同步練習冊答案