綜合①②③可得.實數(shù)的取值范圍是.------12分 查看更多

 

題目列表(包括答案和解析)

已知數(shù)列是各項均不為0的等差數(shù)列,公差為d,為其前n項和,且滿足,.數(shù)列滿足,,為數(shù)列的前n項和.

(1)求數(shù)列的通項公式和數(shù)列的前n項和;

(2)若對任意的,不等式恒成立,求實數(shù)的取值范圍;

(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的值;若不存在,請說明理由.

【解析】第一問利用在中,令n=1,n=2,

   即      

解得,, [

時,滿足

,

第二問,①當n為偶數(shù)時,要使不等式恒成立,即需不等式恒成立.   

 ,等號在n=2時取得.

此時 需滿足.  

②當n為奇數(shù)時,要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時取得最小值-6.

此時 需滿足

第三問,

     若成等比數(shù)列,則,

即.

,可得,即,

        .

(1)(法一)在中,令n=1,n=2,

   即      

解得,, [

時,滿足,

(2)①當n為偶數(shù)時,要使不等式恒成立,即需不等式恒成立.   

 ,等號在n=2時取得.

此時 需滿足.  

②當n為奇數(shù)時,要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時取得最小值-6.

此時 需滿足

綜合①、②可得的取值范圍是

(3)

     若成等比數(shù)列,則,

即.

,可得,即

,且m>1,所以m=2,此時n=12.

因此,當且僅當m=2, n=12時,數(shù)列中的成等比數(shù)列

 

查看答案和解析>>

函數(shù)是定義在上的奇函數(shù),且。

(1)求實數(shù)a,b,并確定函數(shù)的解析式;

(2)判斷在(-1,1)上的單調(diào)性,并用定義證明你的結(jié)論;

(3)寫出的單調(diào)減區(qū)間,并判斷有無最大值或最小值?如有,寫出最大值或最小值。(本小問不需要說明理由)

【解析】本試題主要考查了函數(shù)的解析式和奇偶性和單調(diào)性的綜合運用。第一問中,利用函數(shù)是定義在上的奇函數(shù),且

解得,

(2)中,利用單調(diào)性的定義,作差變形判定可得單調(diào)遞增函數(shù)。

(3)中,由2知,單調(diào)減區(qū)間為,并由此得到當,x=-1時,,當x=1時,

解:(1)是奇函數(shù),。

,………………2分

,又,

(2)任取,且

,………………6分

,

,,,,

在(-1,1)上是增函數(shù)。…………………………………………8分

(3)單調(diào)減區(qū)間為…………………………………………10分

當,x=-1時,,當x=1時,。

 

查看答案和解析>>

將平面向量的數(shù)量積運算與實數(shù)的乘法運算相類比,易得下列結(jié)論:
(1)
a
b
=
b
a
;
(2)(
a
b
)•
c
=
a
 •(
b
c
)
;
(3)
a
•(
b
+
c
)=
a
b
+
a
• 
c
;
(4)由
a
b
=
a
c
(
a
0
)
可得
b
=
c

以上通過類比得到的結(jié)論正確的有( 。

查看答案和解析>>

(2012•自貢一模)要研究可導(dǎo)函數(shù)f(x)=(1+x)n(n∈N*)在某點x0處的瞬時變化率,有兩種方案可供選擇:①直接求導(dǎo),得到f′(x),再把橫坐標x0代入導(dǎo)函數(shù)f′(x)的表達式;②先把f(x)=(1+x)n按二項式展開,逐個求導(dǎo),再把橫坐標x0代入導(dǎo)函數(shù)f′(x)的表達式.綜合①②,可得到某些恒等式.利用上述思想方法,可得恒等式:Cn1+2Cn2+3Cn3+…nCnn=
n•2n-1
n•2n-1
 n∈N*

查看答案和解析>>

關(guān)于平面向量的數(shù)量積運算與實數(shù)的乘法運算相類比,易得下列結(jié)論:
a
b
=
b
a
;②(
a
b
)•
c
=
a
•(
b
c
)
;③
a
•(
b
+
c
)=
a
b
+
a
c

|
a
b
|=|
a
|•|
b
|
;⑤由
a
b
=
a
c
(
a
0
)
,可得
b
=
c

以上通過類比得到的結(jié)論正確的有( 。
A、2個B、3個C、4個D、5個

查看答案和解析>>


同步練習(xí)冊答案