題目列表(包括答案和解析)
(本小題滿分14分)
某研究機構(gòu)為了研究人的腳的大小與身高之間的關(guān)系,隨機抽測了20人,得到如下數(shù)據(jù):
序 號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
身高x(厘米) | 192 | 164 | 172 | 177 | 176 | 159 | 171 | 166 | 182 | 166 |
腳長y( 碼 ) | 48 | 38 | 40 | 43 | 44 | 37 | 40 | 39 | 46 | 39 |
序 號 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
身高x(厘米) | 169 | 178 | 167 | 174 | 168 | 179 | 165 | 170 | 162 | 170 |
腳長y( 碼 ) | 43 | 41 | 40 | 43 | 40 | 44 | 38 | 42 | 39 | 41 |
(Ⅰ)若“身高大于175厘米”的為“高個”,“身高小于等于175厘米”的為“非高個”;“腳長大于42碼”的為“大腳”,“腳長小于等于42碼”的為“非大腳”.請根據(jù)上表數(shù)據(jù)完成下面的聯(lián)列表:
高 個 | 非高個 | 合 計 | |
大 腳 | |||
非大腳 | 12 | ||
合 計 | 20 |
(Ⅱ)根據(jù)題(1)中表格的數(shù)據(jù),若按99%的可靠性要求,能否認為腳的大小與身高之間有關(guān)系?
(Ⅲ)若按下面的方法從這20人中抽取1人來核查測量數(shù)據(jù)的誤差:將一個標有數(shù)字1,2,3,4,5,6的正六面體骰子連續(xù)投擲兩次,記朝上的兩個數(shù)字的乘積為被抽取人的序號.試求:
①抽到12號的概率;②抽到“無效序號(超過20號)”的概率.
(本題滿分15分)某市物價局調(diào)查了某種治療H1N1流感的常規(guī)藥品在2009年每個月的批發(fā)價格和該藥品在藥店的銷售價格,調(diào)查發(fā)現(xiàn),該藥品的批發(fā)價格按月份以12元/盒為中心價隨某一正弦曲線上下波動,且3月份的批發(fā)價格最高為14元/盒,7月份的批發(fā)價格最低為10元/盒。該藥品在藥店的銷售價格按月份以14元/盒為中心價隨另一正弦曲線上下波動,且5月份的銷售價格最高為16元/盒,9月份的銷售價格最低為12元/盒。
(Ⅰ)求該藥品每盒的批發(fā)價格f(x)和銷售價格g(x)關(guān)于月份的函數(shù)解析式;
(Ⅱ)假設(shè)某藥店每月初都購進這種藥品p 盒,且當月售完,求該藥店在2009年哪些月份是盈利的?說明你的理由.
某花店每天以每枝5元的價格從農(nóng)場購進若干枝玫瑰花,然后以每枝10元的價格出售.如果當天賣不完,剩下的玫瑰花做垃圾處理.
(Ⅰ)若花店一天購進17枝玫瑰花,求當天的利潤y(單位:元)關(guān)于當天需求量n(單位:枝,n∈N)的函數(shù)解析式.
(Ⅱ)花店記錄了100 天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數(shù) | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
某花店每天以每枝5元的價格從農(nóng)場購進若干枝玫瑰花,然后以每枝10元的價格出售。如果當天賣不完,剩下的玫瑰花做垃圾處理。
(Ⅰ)若花店一天購進17枝玫瑰花,求當天的利潤y(單位:元)關(guān)于當天需求量n(單位:枝,n∈N)的函數(shù)解析式。
(Ⅱ)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量n |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
頻數(shù) |
10 |
20 |
16 |
16 |
15 |
13 |
10 |
(i)假設(shè)花店在這100天內(nèi)每天購進17枝玫瑰花,求這100天的日利潤(單位:元)的平均數(shù);
(ii)若花店一天購進17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當天的利潤不少于75元的概率.
【命題意圖】本題主要考查給出樣本頻數(shù)分別表求樣本的均值、將頻率做概率求互斥事件的和概率,是簡單題.
【解析】(Ⅰ)當日需求量時,利潤=85;
當日需求量時,利潤,
∴關(guān)于的解析式為;
(Ⅱ)(i)這100天中有10天的日利潤為55元,20天的日利潤為65元,16天的日利潤為75元,54天的日利潤為85元,所以這100天的平均利潤為
=76.4;
(ii)利潤不低于75元當且僅當日需求不少于16枝,故當天的利潤不少于75元的概率為
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com