題目列表(包括答案和解析)
二次函數(shù)f(x)=ax2+x+1(a>0)的圖象與x軸的兩個不同的交點的橫坐標分別為x1、x2。
(1)證明:(1+x1)(1+x2)=1;www.zxxk.com
(2)證明:x1<-1,x2<-1;
(3)若函數(shù)y=xf(x)在區(qū)間(-,-4)上單調(diào)遞增,試求a的取值范圍。
二次函數(shù)f(x)=ax2+x+1(a>0)的圖象與x軸的兩個不同的交點的橫坐標分別為x1、x2。
(1)證明:(1+x1)(1+x2)=1;
(2)證明:x1<-1,x2<-1;
(3)若函數(shù)y=xf(x)在區(qū)間(-,-4)上單調(diào)遞增,試求a的取值范圍。
設(shè)函數(shù)f(x)=-++2ax
(Ⅰ)若函數(shù)f(x)在(,+∞)上存在單調(diào)遞增區(qū)間,求a的取值范圍;
(Ⅱ)當0<a<2時,f(x)在[1,4]上的最小值為-,求f(x)在該區(qū)間上的最大
值.
對任意的[0,1]上的單峰函數(shù)f(x),下面研究縮短其含峰區(qū)間長度的方法.
(I)證明:對任意的x1,x2∈(0,1),x1<x2,若f(x1)≥f(x2),則(0,x2)為含峰區(qū)間;若f(x1)≤f(x2),則(x1,1)為含峰區(qū)間;
(II)對給定的r(0<r<0.5),證明:存在x1,x2∈(0,1),滿足x2-x1≥2r,使得由(I)所確定的含峰區(qū)間的長度不大于 0.5+r;
(III)選取x1,x2∈(0, 1),x1<x2,由(I)可確定含峰區(qū)間為(0,x2)或(x1,1),在所得的含峰區(qū)間內(nèi)選取x3,由x3與x1或x3與x2類似地可確定一個新的含峰區(qū)間.在第一次確定的含峰區(qū)間為(0,x2)的情況下,試確定x1,x2,x3的值,滿足兩兩之差的絕對值不小于0.02,且使得新的含峰區(qū)間的長度縮短到0.34.
(區(qū)間長度等于區(qū)間的右端點與左端點之差)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com