(Ⅲ)對由a1=1.an=定義的數(shù)列{an}.求其通項公式an. 查看更多

 

題目列表(包括答案和解析)

對于數(shù)列{an},(n∈N+,an∈N+),若bk為a1,a2,…,ak中最大值(k=1,2,…n),則稱數(shù)列{bn}為數(shù)列{an}的“凸值數(shù)列”.如數(shù)列2,1,3,7,5的“凸值數(shù)列”為2,2,3,7,7;由此定義,下列說法正確的有
①④
①④

①遞減數(shù)列{an}的“凸值數(shù)列”是常數(shù)列;
②不存在數(shù)列{an},它的“凸值數(shù)列”還是{an}本身;
③任意數(shù)列{an}的“凸值數(shù)列”是遞增數(shù)列;
④“凸值數(shù)列”為1,3,3,9,的所有數(shù)列{an}的個數(shù)為3.

查看答案和解析>>

定義:若數(shù)列{an}對任意n∈N*,滿足
an+2-an+1
an+1-an
=k
(k為常數(shù)),稱數(shù)列{an}為等差比數(shù)列.
(1)若數(shù)列{an}前n項和Sn滿足Sn=3(an-2),求{an}的通項公式,并判斷該數(shù)列是否為等差比數(shù)列;
(2)若數(shù)列{an}為等差數(shù)列,試判斷{an}是否一定為等差比數(shù)列,并說明理由;
(3)若數(shù)列{an}為等差比數(shù)列,定義中常數(shù)k=2,a2=3,a1=1,數(shù)列{
2n-1
an+1
}
的前n項和為Tn,求證:Tn<3.

查看答案和解析>>

對于數(shù)列{an},(n∈N+,an∈N+),若bk為a1,a2,…,ak中最大值(k=1,2,…n),則稱數(shù)列{bn}為數(shù)列{an}的“凸值數(shù)列”.如數(shù)列2,1,3,7,5的“凸值數(shù)列”為2,2,3,7,7;由此定義,下列說法正確的有   
①遞減數(shù)列{an}的“凸值數(shù)列”是常數(shù)列;
②不存在數(shù)列{an},它的“凸值數(shù)列”還是{an}本身;
③任意數(shù)列{an}的“凸值數(shù)列”是遞增數(shù)列;
④“凸值數(shù)列”為1,3,3,9,的所有數(shù)列{an}的個數(shù)為3.

查看答案和解析>>

對于數(shù)列{an},(n∈N+,an∈N+),若bk為a1,a2,…,ak中最大值(k=1,2,…n),則稱數(shù)列{bn}為數(shù)列{an}的“凸值數(shù)列”.如數(shù)列2,1,3,7,5的“凸值數(shù)列”為2,2,3,7,7;由此定義,下列說法正確的有   
①遞減數(shù)列{an}的“凸值數(shù)列”是常數(shù)列;
②不存在數(shù)列{an},它的“凸值數(shù)列”還是{an}本身;
③任意數(shù)列{an}的“凸值數(shù)列”是遞增數(shù)列;
④“凸值數(shù)列”為1,3,3,9,的所有數(shù)列{an}的個數(shù)為3.

查看答案和解析>>

對于數(shù)列{an},(n∈N+,an∈N+),若bk為a1,a2,…,ak中最大值(k=1,2,…n),則稱數(shù)列{bn}為數(shù)列{an}的“凸值數(shù)列”.如數(shù)列2,1,3,7,5的“凸值數(shù)列”為2,2,3,7,7;由此定義,下列說法正確的有________
①遞減數(shù)列{an}的“凸值數(shù)列”是常數(shù)列;
②不存在數(shù)列{an},它的“凸值數(shù)列”還是{an}本身;
③任意數(shù)列{an}的“凸值數(shù)列”是遞增數(shù)列;
④“凸值數(shù)列”為1,3,3,9,的所有數(shù)列{an}的個數(shù)為3.

查看答案和解析>>

一、       選擇題

題號

1

2

3

4

5

6

7

8

9

10

答案

A

C

C

C

D

B

B

C

C

B

二、填空題

題號

     11

    12

   13  

  14(1)

  14(2)

答案

   6

  2

 

  3

三、解答題:本大題共6小題,共80分,解答應(yīng)寫出文字說明、證明過程或演算步驟.

15.解:(Ⅰ),不等式的解為,

,

(Ⅱ)由(Ⅰ)可知,,

,

16、解:

 

   (I)函數(shù)的最小正周期是        ……………………………7分

  。↖I)∴   ∴   

     ∴               

    所以的值域為:                 …………12分

17、解:(1)因為,,成等差數(shù)列,所以2f(2)=f(1)+f(4),

即:2log2(2+m)=log2(1+m)+log2(4+m),即log2(2+m)2=log2(1+m)(4+m),得

(2+m)2=(1+m)(4+m),得m=0.

(2) 若、、是兩兩不相等的正數(shù),且、、依次成等差數(shù)列,設(shè)a=b-d,c=b+d,(d不為0);

f(a)+f(c)-2f(b)=log2(a+m)+log2(c+m)-2log2(b+m)=log2

因為(a+m)(c+m)-(b-m)2=ac+(a+c)m+m2-(b+m)2=b2-d2+2bm+m2-(b+m)2=-d2<0

所以:0<(a+m)(c+m)<(b+m)2,得0<<1,得log2<0,

所以:f(a)+f(c)<2f(b).

18. 解:(Ⅰ)的定義域關(guān)于原點對稱

為奇函數(shù),則  ∴a=0

(Ⅱ)∴在上單調(diào)遞增

上恒大于0只要大于0即可,∴

上恒大于0,a的取值范圍為

19. 解:(Ⅰ)設(shè)的公差為,則:,,

,,∴,∴. ………………………2分

.  …………………………………………4分

(Ⅱ)當(dāng)時,,由,得.     …………………5分

當(dāng)時,,

,即.  …………………………7分

  ∴.   ……………………………………………………………8分

是以為首項,為公比的等比數(shù)列. …………………………………9分

(Ⅲ)由(2)可知:.   ……………………………10分

. …………………………………11分

.    ………………………………………13分

.  …………………………………………………14分

20.解:(Ⅰ)設(shè)函數(shù)

   (Ⅱ)由(Ⅰ)可知

可知使恒成立的常數(shù)k=8.

(Ⅲ)由(Ⅱ)知 

可知數(shù)列為首項,8為公比的等比數(shù)列

即以為首項,8為公比的等比數(shù)列. 則 

 


同步練習(xí)冊答案