(Ⅰ)求函數(shù)的不動點(diǎn), 查看更多

 

題目列表(包括答案和解析)

對于函數(shù)的“不動點(diǎn)”;若 的“穩(wěn)定點(diǎn)”,函數(shù)f(x)的“不動點(diǎn)”和“穩(wěn)定點(diǎn)”的集合分別記為A和B,即

   (1)求證:

   (2)若的取值范圍.

查看答案和解析>>

已知函數(shù)f(x)=logax,g(x)=x,h(x)=ax
(1)若a=2,設(shè)m(x)=h(x)-g(x),n(x)=g(x)-f(x),當(dāng)x>1時,試比較m(x)與n(x)的大。ㄖ恍枰獙懗鼋Y(jié)果,不必證明);
(2)若a=
12
,設(shè)P是函數(shù)g(x)圖象在第一象限上的一個動點(diǎn),過點(diǎn)P作平行于x軸的直線
與函數(shù)h(x)和f(x)的圖象分別交于A、B兩點(diǎn),過點(diǎn)P作平行于y軸的直線與函數(shù)h(x)和f(x)的圖象分別交于C、D兩點(diǎn),求證:|AB|=|CD|.

查看答案和解析>>

已知函數(shù)f(x)=ex-
1
ex
,g(x)=ex+
1
ex
,動直線x=t分別與函數(shù)y=f(x)、y=g(x)的圖象分別交于點(diǎn)A(t,f(t))、B(t,g(t)),在點(diǎn)A處作函數(shù)y=f(x)的圖象的切線,記為直線l1,在點(diǎn)B處作函數(shù)y=g(x)的圖象的切線,記為直線l2
(Ⅰ)證明:不論t取何實(shí)數(shù)值,直線l1與l2恒相交;
(Ⅱ)若直線l1與l2相交于點(diǎn)P,試求點(diǎn)P到直線AB的距離;
(Ⅲ)當(dāng)t<0時,試討論△PAB何時為銳角三角形?直角三角形?鈍角三角形?

查看答案和解析>>

已知函數(shù)f(x)=logax,g(x)=x,h(x)=ax
(1)若a=2,設(shè)m(x)=h(x)-g(x),n(x)=g(x)-f(x),當(dāng)x>1時,試比較m(x)與n(x)的大。ㄖ恍枰獙懗鼋Y(jié)果,不必證明);
(2)若數(shù)學(xué)公式,設(shè)P是函數(shù)g(x)圖象在第一象限上的一個動點(diǎn),過點(diǎn)P作平行于x軸的直線
與函數(shù)h(x)和f(x)的圖象分別交于A、B兩點(diǎn),過點(diǎn)P作平行于y軸的直線與函數(shù)h(x)和f(x)的圖象分別交于C、D兩點(diǎn),求證:|AB|=|CD|.

查看答案和解析>>

已知函數(shù)f(x)=logax,g(x)=x,h(x)=ax
(1)若a=2,設(shè)m(x)=h(x)-g(x),n(x)=g(x)-f(x),當(dāng)x>1時,試比較m(x)與n(x)的大小(只需要寫出結(jié)果,不必證明);
(2)若a=
1
2
,設(shè)P是函數(shù)g(x)圖象在第一象限上的一個動點(diǎn),過點(diǎn)P作平行于x軸的直線
與函數(shù)h(x)和f(x)的圖象分別交于A、B兩點(diǎn),過點(diǎn)P作平行于y軸的直線與函數(shù)h(x)和f(x)的圖象分別交于C、D兩點(diǎn),求證:|AB|=|CD|.

查看答案和解析>>

一、       選擇題

題號

1

2

3

4

5

6

7

8

9

10

答案

A

C

C

C

D

B

B

C

C

B

二、填空題

題號

     11

    12

   13  

  14(1)

  14(2)

答案

   6

  2

 

  3

三、解答題:本大題共6小題,共80分,解答應(yīng)寫出文字說明、證明過程或演算步驟.

15.解:(Ⅰ),不等式的解為

,

(Ⅱ)由(Ⅰ)可知,,

,

16、解:

 

  。↖)函數(shù)的最小正周期是        ……………………………7分

  。↖I)∴   ∴   

     ∴               

    所以的值域?yàn)椋?sub>                 …………12分

17、解:(1)因?yàn)?sub>,,成等差數(shù)列,所以2f(2)=f(1)+f(4),

即:2log2(2+m)=log2(1+m)+log2(4+m),即log2(2+m)2=log2(1+m)(4+m),得

(2+m)2=(1+m)(4+m),得m=0.

(2) 若、是兩兩不相等的正數(shù),且、、依次成等差數(shù)列,設(shè)a=b-d,c=b+d,(d不為0);

f(a)+f(c)-2f(b)=log2(a+m)+log2(c+m)-2log2(b+m)=log2

因?yàn)椋╝+m)(c+m)-(b-m)2=ac+(a+c)m+m2-(b+m)2=b2-d2+2bm+m2-(b+m)2=-d2<0

所以:0<(a+m)(c+m)<(b+m)2,得0<<1,得log2<0,

所以:f(a)+f(c)<2f(b).

18. 解:(Ⅰ)的定義域關(guān)于原點(diǎn)對稱

為奇函數(shù),則  ∴a=0

(Ⅱ)∴在上單調(diào)遞增

上恒大于0只要大于0即可,∴

上恒大于0,a的取值范圍為

19. 解:(Ⅰ)設(shè)的公差為,則:,,

,,∴,∴. ………………………2分

.  …………………………………………4分

(Ⅱ)當(dāng)時,,由,得.     …………………5分

當(dāng)時,,

,即.  …………………………7分

  ∴.   ……………………………………………………………8分

是以為首項(xiàng),為公比的等比數(shù)列. …………………………………9分

(Ⅲ)由(2)可知:.   ……………………………10分

. …………………………………11分

.    ………………………………………13分

.  …………………………………………………14分

20.解:(Ⅰ)設(shè)函數(shù)

   (Ⅱ)由(Ⅰ)可知

可知使恒成立的常數(shù)k=8.

(Ⅲ)由(Ⅱ)知 

可知數(shù)列為首項(xiàng),8為公比的等比數(shù)列

即以為首項(xiàng),8為公比的等比數(shù)列. 則 

 


同步練習(xí)冊答案