題目列表(包括答案和解析)
(1)x = 0;
(2);
(3);
(4)x1∈A,x2∈A,x=x1+x2;
(5)x1∈A,x2∈A,x=x1x2?;
(6)試求滿(mǎn)足0<a+b<1的A中元素的個(gè)數(shù)(a、b∈Z).
已知集合L={(x,y)|y=2x+1},點(diǎn)Pn(an,bn)∈L,P1為L(zhǎng)中元素與直線(xiàn)y=1的交點(diǎn),數(shù)列{an}是公差為1的等差數(shù)列.
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)若cn=(n≥2),求數(shù)列{cn}的所有項(xiàng)和Sn
(3)設(shè)f(n)=是否存在正整數(shù)n,使f(n+11)=2f(n)成立,若存在,求出n的值,若不存在,說(shuō)明理由
設(shè)全集,集合,集合
(Ⅰ)求集合與; (Ⅱ)求、
一、 選擇題
題號(hào)
1
2
3
4
5
6
7
8
9
10
答案
A
C
C
C
D
B
B
C
C
B
二、填空題
題號(hào)
11
12
13
14(1)
14(2)
答案
6
2
3
三、解答題:本大題共6小題,共80分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
15.解:(Ⅰ),不等式的解為,
,
(Ⅱ)由(Ⅰ)可知,,
,
16、解:
。↖)函數(shù)的最小正周期是 ……………………………7分
。↖I)∴ ∴
∴
所以的值域?yàn)椋?sub> …………12分
17、解:(1)因?yàn)?sub>,,成等差數(shù)列,所以
即:2log2(2+m)=log2(1+m)+log2(4+m),即log2(2+m)2=log2(1+m)(4+m),得
(2+m)2=(1+m)(4+m),得m=0.
(2) 若、、是兩兩不相等的正數(shù),且、、依次成等差數(shù)列,設(shè)a=b-d,c=b+d,(d不為0);
f(a)+f(c)
因?yàn)椋╝+m)(c+m)-(b-m)2=ac+(a+c)m+m2-(b+m)2=b2-d2+2bm+m2-(b+m)2=-d2<0
所以:0<(a+m)(c+m)<(b+m)2,得0<<1,得log2<0,
所以:f(a)+f(c)<
18. 解:(Ⅰ)的定義域關(guān)于原點(diǎn)對(duì)稱(chēng)
若為奇函數(shù),則 ∴a=0
(Ⅱ)∴在上∴在上單調(diào)遞增
∴在上恒大于0只要大于0即可,∴
若在上恒大于0,a的取值范圍為
19. 解:(Ⅰ)設(shè)的公差為,則:,,
∵,,∴,∴. ………………………2分
∴. …………………………………………4分
(Ⅱ)當(dāng)時(shí),,由,得. …………………5分
當(dāng)時(shí),,,
∴,即. …………………………7分
∴. ……………………………………………………………8分
∴是以為首項(xiàng),為公比的等比數(shù)列. …………………………………9分
(Ⅲ)由(2)可知:. ……………………………10分
∴. …………………………………11分
∴.
∴.
∴
. ………………………………………13分
∴. …………………………………………………14分
20.解:(Ⅰ)設(shè)函數(shù)
(Ⅱ)由(Ⅰ)可知
可知使恒成立的常數(shù)k=8.
(Ⅲ)由(Ⅱ)知
可知數(shù)列為首項(xiàng),8為公比的等比數(shù)列
即以為首項(xiàng),8為公比的等比數(shù)列. 則
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com