題目列表(包括答案和解析)
(本小題滿分14分)
在△OAB的邊OA,OB上分別有一點P,Q,已知:=1:2, :=3:2,連結(jié)AQ,BP,設(shè)它們交于點R,若=a,=b.
(1)用a與 b表示;
(2)過R作RH⊥AB,垂足為H,若| a|=1, | b|=2, a與 b的夾角的取值范圍.
(本小題滿分14分)已知A(8,0),B、C兩點分別在y軸和x軸上運(yùn)動,并且滿足。
(1)求動點P的軌跡方程。
(2)若過點A的直線L與動點P的軌跡交于M、N兩點,且
其中Q(-1,0),求直線L的方程.
(本小題滿分14分)
已知函數(shù),a>0,w.w.w.k.s.5.u.c.o.m
(Ⅰ)討論的單調(diào)性;
(Ⅱ)設(shè)a=3,求在區(qū)間{1,}上值域。期中e=2.71828…是自然對數(shù)的底數(shù)。
(本小題滿分14分)
已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=其中λ為實數(shù),n為正整數(shù)。
(Ⅰ)對任意實數(shù)λ,證明數(shù)列{an}不是等比數(shù)列;
(Ⅱ)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論;
(Ⅲ)設(shè)0<a<b,Sn為數(shù)列{bn}的前n項和。是否存在實數(shù)λ,使得對任意正整數(shù)n,都有
a<Sn<b?若存在,求λ的取值范圍;若不存在,說明理由。
(本小題滿分14分)
如圖(1),是等腰直角三角形,,、分別為、的中點,將沿折起, 使在平面上的射影恰為的中點,得到圖(2).
(Ⅰ)求證:;
(Ⅱ)求三棱錐的體積.
一.選擇題:
題號
1
2
3
4
5
6
7
8
答案
C
A
C
B
B
A
B
D
二.填空題:
9.6、30、10; 10.; 11.;
12.; 13.{0<≤3}; 14.③④
三、 解答題:本大題共6小題,共80分。解答應(yīng)寫出文字說明,證明過程或演算步驟。
15.解: ; ………5分
方程有非正實數(shù)根
綜上: ……………………12分
16. 解:(Ⅰ)設(shè)取出的4件中有2件合格品或3件合格品分別為事件A、B,則
∵A、B為兩個互斥事件 ∴P(A+B)=P(A)+P(B)=
答: 取出2件合格品或3件合格品的概率為…………6分
(Ⅱ)取出4件都為合格品的事件為C,則P(C)=
至少取出一件次品的事件為事件C的對立事件,其概率為
答:至少取出一件次品的概率為.…………13分
17.解:(1)f(x)=x3+ax2+bx+c,f¢(x)=3x2+2ax+b
由f¢()=,f¢(1)=3+
a=,b=-2。。。。。。。。。4分
f¢(x)=32--2=(3+2)(-1),函數(shù)f(x)的單調(diào)區(qū)間如下表:
(-¥,-)
-
(-,1)
1
(1,+¥)
f¢(x)
+
0
-
0
+
f(x)
極大值
¯
極小值
所以函數(shù)f()的遞增區(qū)間是(-¥,-)與(1,+¥)
遞減區(qū)間是(-,1)。。。。。。。。。。。7分
(2)f(x)=3-2-2+c,Î,由(1)當(dāng)=-時,f(x)=+c
為極大值,而f(2)=2+c,則f(2)=2+c為最大值。
要使f(x)<c2(Î)恒成立,只需c
解得c<-1或c>2 。。。。。。。。。。。。13分
18.(Ⅰ)證明:∵底面,底面,∴
又∵且平面, 平面, ,
∴平面;4分
。á颍┙猓骸唿c分別是的中點,
∴,由(Ⅰ)知平面,∴平面,
∴,,
∴為二面角的平面角,7分
∵底面,
∴與底面所成的角即為,
∴=,
∵為直角三角形斜邊的中點,
∴為等腰三角形,且,
∴,∴二面角的大小為;9分
(Ⅲ)法1:過點作交于點,則或其補(bǔ)角即為異面直
線所成的角,11分
∵為的中點,∴為為的中點, 設(shè),則由得,又,∴ ∴=,∴,
∴由(Ⅱ)知為直角三角形,且 ,
,∴,
在直角三角形中,,
∴,
∴在三角形中,,13分
∴為直角三角形,為直角,
∴異面直線所成的角為.14分
或者用三垂線定理,首先證明DB與BC垂直也可以
因為 ∴=,又,
所以,即DB與BC垂直
法2:以點為坐標(biāo)原點,建立如圖的直角坐標(biāo)系,設(shè),則,,,則
則,,,
,∴異面直線所成的角為……………. 14分
19.解:1)由=.=,∴=1;……….4分
(2)=在(1,+∞)上是單調(diào)遞減函數(shù),
任取、∈(1,+∞),且設(shè)<,則:
-=>0,
∴=在(1,+∞)上是單調(diào)遞減函數(shù);……………9分
(3)當(dāng)直線=(∈R)與的圖象無公共點時,=1,
∴<2+=4=,|-2|+>2,
得:>或<…………..14分
20.解
(1)當(dāng)時,
設(shè)為其不動點,即
則 的不動點是-1,2……….. 4分
(2)由得:. 由已知,此方程有相異二實根,
恒成立,即即對任意恒成立.
…………………. …………10分
(3)設(shè),
直線是線段AB的垂直平分線, ∴
記AB的中點由(2)知
化簡得:時,等號成立).
……………………………………………………………14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com