題目列表(包括答案和解析)
(本小題滿分14分)
已知函數(shù)。
(1)證明:
(2)若數(shù)列的通項公式為
,求數(shù)列
的前
項和
;w.w.w.k.s.5.u.c.o.m
(3)設(shè)數(shù)列滿足:
,設(shè)
,
若(2)中的滿足對任意不小于2的正整數(shù)
,
恒成立,
試求的最大值。
(本小題滿分14分)已知,點
在
軸上,點
在
軸的正半軸,點
在直線
上,且滿足
,
. w.w.w.k.s.5.u.c.o.m
(Ⅰ)當(dāng)點在
軸上移動時,求動點
的軌跡
方程;
(本小題滿分14分)設(shè)函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若當(dāng)時,不等式
恒成立,求實數(shù)
的取值范圍;w.w.w.k.s.5.u.c.o.m
(本小題滿分14分)
已知,其中
是自然常數(shù),
(1)討論時,
的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m
(2)求證:在(1)的條件下,;
(3)是否存在實數(shù),使
的最小值是3,若存在,求出
的值;若不存在,說明理由.
(本小題滿分14分)
設(shè)數(shù)列的前
項和為
,對任意的正整數(shù)
,都有
成立,記
。
(I)求數(shù)列的通項公式;
(II)記,設(shè)數(shù)列
的前
項和為
,求證:對任意正整數(shù)
都有
;
(III)設(shè)數(shù)列的前
項和為
。已知正實數(shù)
滿足:對任意正整數(shù)
恒成立,求
的最小值。
說明:
一、本解答指出了每題要考查的主要知識和能力,并給出了一種或幾種解法供參考,如果考生的解法與本解答不同,可根據(jù)試題的主要考查內(nèi)容比照評分標(biāo)準(zhǔn)制定相應(yīng)的評分細(xì)則.
二、對計算題,當(dāng)考生的解答在某一步出現(xiàn)錯誤時,如果后繼部分的解答未改變該題的內(nèi)容和難度,可視影響的程度決定后繼部分的給分,但不得超過該部分正確解答應(yīng)給分?jǐn)?shù)的一半;如果后繼部分的解答有較嚴(yán)重的錯誤,就不再給分.
三、解答右端所注分?jǐn)?shù),表示考生正確做到這一步應(yīng)得的累加分?jǐn)?shù).
四、只給整數(shù)分?jǐn)?shù),選擇題和填空題不給中間分.
一、選擇題:本題考查基本知識和基本運算,每小題5分,滿分50分.
1. B 2. C 3. B 4.C 5.D 6.A 7. B 8. A 9. C 10. C
二、填空題:本題考查基本知識和基本運算,每小題4分,滿分20分.
11. 1 12. 13.
2 14.
15.
①③
三、解答題:本大題共6小題,共80分,解答應(yīng)寫出文字說明,證明過程或演算步驟.
16. 本題主要考查三角函數(shù)的倍角公式、兩角和公式等基本知識,考查學(xué)生的運算求解能
力. 滿分13分.
解:(Ⅰ)因為,
兩邊同時平方得
.
………………………………………(4分)
又,
所以.
………………………………………(6分)
(Ⅱ)因為,
,
所以,得
.
又,知
. …………………(9分)
. ………………………………………(13分)
17. 本題主要考查線線位置關(guān)系,二面角的求法等基本知識,考查空間想像能力,運算求解能力和推理論證能力. 滿分13分.
解:(Ⅰ)證明:連結(jié),
側(cè)棱
底面ABC,
,又
.
平面
.
又平面
,
. ………(3分)
,
四邊形
為正方形,
.
,
平面
.
又平面
,
. …………(6分)
(Ⅱ).
平面
.
又,
.
如圖,以為原點,建立空間直角坐標(biāo)系
-xyz,設(shè)AP=x,則
、
、
、
.
知面的一個法向量為
, ……(9分)
設(shè)面的一個法向量為
,
,
.
由 得
令,
………(11分)
依題意:=
解得(不合題意,舍去),
時,二面角
的大小為
. …………(13分)
18.本題主要考查數(shù)列與不等式等基本知識,考查運用數(shù)學(xué)知識分析問題與解決問題的能力,
考查應(yīng)用意識. 滿分13分.
解:設(shè)第一年(今年)的汽車總量為,第n年的汽車總量為
,則
,
…
.
數(shù)列構(gòu)成的首項為80000,公差為2000的等差數(shù)列,
. ………………………(4分)
若洗車行A從今年開始經(jīng)過n年可以收回購買凈化設(shè)備的成本. 則()
-20000n≥900000,………………………(8分)
整理得,
因為,所以
.
答:至少要經(jīng)過6年才能收回成本. …………………………………………(13分)
19.本題主要考查直線與拋物線的位置關(guān)系、等比數(shù)列求和等基本知識,考查運算求解能力和分析問題、解決問題的能力. 滿分13分
解:(Ⅰ)依題意得:,解得
.
所以拋物線方程為 . ………………………………………………(3分)
(Ⅱ)若,即直線AB垂直于x軸,不防設(shè)
,
由又由拋物線對稱性可得:
.
又,得
,故S△ABD=
. …………………………(4分)
若,設(shè)直線AB方程:
,
由方程組消去
得:
.(※)
依題意可知:.
由已知得,
. ……………………………………(5分)
由,得
,
即,整理得
.
所以 . …………………………………………(6分)
中點
,
所以點,
依題意知.
又因為方程(※)中判別式,得
.
所以 ,又
,
所以.
又為常數(shù),故
的面積為定值. …………………………………(9分)
(Ⅲ)依題意得:…,
.
故…
<
. ………………………………(13分)
注:本題第(Ⅱ)問另解,參照本標(biāo)準(zhǔn)給分;第(Ⅲ)問若用定積分證明,同樣給分.
20. 本題主要考查函數(shù)的單調(diào)性、極值、最值、不等式等基本知識,考查運用導(dǎo)數(shù)研究函數(shù)
性質(zhì)的方法,考查分類與整合及化歸與轉(zhuǎn)化等數(shù)學(xué)思想. 滿分14分.
解:(Ⅰ)依題意,知的定義域為
.
當(dāng)時,
,
.
令,解得
.
當(dāng)時,
;當(dāng)
時,
.
又,
所以的極小值為
,無極大值 . …………………………(3分)
(Ⅱ)
.
令,解得
. …………………………(4分)
若,令
,得
;令
,得
.
若,
①當(dāng)時,
,
令,得
或
;
令,得
.
②當(dāng)時,
.
③當(dāng)時,得
,
令,得
或
;
令,得
.
綜上所述,當(dāng)時,
的遞減區(qū)間為
,遞增區(qū)間為
.
當(dāng)時,
的遞減區(qū)間為
;遞增區(qū)間為
.
當(dāng)時,
遞減區(qū)間為
.當(dāng)
時,
的遞減區(qū)間為
,遞增區(qū)間為
. …………………………(9分)
(Ⅲ)當(dāng)時,
,
由,知
時,
.
,
.
依題意得: 對一切正整數(shù)成立. ……………(11分)
令 ,則
(當(dāng)且僅當(dāng)
時取等號).
又在區(qū)間
單調(diào)遞增,得
,
故,又
為正整數(shù),得
,
當(dāng)時,存在
,
,
對所有滿足條件.
所以,正整數(shù)的最大值為32. …………………………………(14分)
21. (1)本題主要考查矩陣乘法與變換等基本知識,考查運算求解能力,考查函數(shù)與方程思
想. 滿分7分.
解:PQ=,
PQ矩陣表示的變換T:滿足條件
.
所以 ………………………(3分)
直線任取點
,則點
在直線
上,
故,又
,得
所以
………………………………………(7分)
(2)本題主要考查直線極坐標(biāo)方程和橢圓參數(shù)方程等基本知識,考查運算求解能力,考查化歸與轉(zhuǎn)化思想. 滿分7分.
解:由題意知直線和橢圓方程可化為:
, ①
. ② …………………………(2分)
①②聯(lián)立,消去得:
,解得
,
.
設(shè)直線與橢圓交于A、B兩點,則
.
故所求的弦長為. &n
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com