用鋼筆或圓珠筆答在答題卡上. 查看更多

 

題目列表(包括答案和解析)

將填空題和解答題用0.5毫米的黑色墨水簽字筆答在答題卡上每題對應的答題區(qū)域內(nèi).答在試題卷上無效。

查看答案和解析>>

本題共有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則以所做的前2題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
變換T1是逆時針旋轉90°的旋轉變換,對應的變換矩陣為M1,變換T2對應的變換矩陣是M2=
11
01
;
(I)求點P(2,1)在T1作用下的點Q的坐標;
(II)求函數(shù)y=x2的圖象依次在T1,T2變換的作用下所得的曲線方程.
(2)選修4-4:極坐標系與參數(shù)方程
從極點O作一直線與直線l:ρcosθ=4相交于M,在OM上取一點P,使得OM•OP=12.
(Ⅰ)求動點P的極坐標方程;
(Ⅱ)設R為l上的任意一點,試求RP的最小值.
(3)選修4-5:不等式選講
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集為{x|x≥
1
2
或x≤-
5
6
}
,求實數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x-1)>b對一切實數(shù)x恒成立,求實數(shù)b的取值范圍.

查看答案和解析>>

本題共有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則以所做的前2題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
變換T1是逆時針旋轉90°的旋轉變換,對應的變換矩陣為M1,變換T2對應的變換矩陣是M2=
11
01
;
(I)求點P(2,1)在T1作用下的點Q的坐標;
(II)求函數(shù)y=x2的圖象依次在T1,T2變換的作用下所得的曲線方程.
(2)選修4-4:極坐標系與參數(shù)方程
從極點O作一直線與直線l:ρcosθ=4相交于M,在OM上取一點P,使得OM•OP=12.
(Ⅰ)求動點P的極坐標方程;
(Ⅱ)設R為l上的任意一點,試求RP的最小值.
(3)選修4-5:不等式選講
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集為{x|x≥
1
2
或x≤-
5
6
}
,求實數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x-1)>b對一切實數(shù)x恒成立,求實數(shù)b的取值范圍.

查看答案和解析>>

本題有(I)、(II)、(III)三個選作題,每題7分,請考生任選兩題作答,滿分14分.如果多做,則按所做的前兩題記分,作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
已知a∈R,矩陣P=
02
-10
,Q=
01
a0
,若矩陣PQ對應的變換把直線l1:x-y+4=0變?yōu)橹本l2:x+y+4=0,求實數(shù)a的值.
(2)選修4-4:坐標系與參數(shù)方程
在極坐標系中,求圓C:ρ=2上的點P到直線l:ρ(cosθ+
3
sinθ)=6
的距離的最小值.
(3)選修4-5:不等式選講
已知實數(shù)x,y滿足x2+4y2=a(a>0),且x+y的最大值為5,求實數(shù)a的值.

查看答案和解析>>

本題有(Ⅰ)、(Ⅱ)、(Ⅲ)三個選答題,每題7分,請考生任選兩題作答,滿分14分.如果多做,則按所做的前兩題記分.作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
(Ⅰ)直線l1:x=-4先經(jīng)過矩陣A=
4m
n-4
作用,再經(jīng)過矩陣B=
11
0-1
作用,變?yōu)橹本l2:2x-y=4,求矩陣A.
(Ⅱ)已知直線l的參數(shù)方程:
x=t
y=1+2t
(t為參數(shù))和圓C的極坐標方程:p=2
2
sin(θ+
π
4
).判斷直線l和圓C的位置關系.
(Ⅲ)解不等式:|x|+2|x-1|≤4.

查看答案和解析>>

一、選擇題:1~12(5×12=60)

題號

01

02

03

04

05

06

07

08

09

10

11

12

答案

B

B

A

B

C

D

B

C

B

C

C

D

二、填空題:13、B;14、-;15、32005;16、(2-2,2)。

三、解答題:

17.解:(1)根據(jù)已知條件得:△=16sin2θ-4atanθ=0

              即:a=2sin2θ                                                                2分

              又由已知:

              得                                                                              4分

              所以有0<sin2θ<1

              所以a∈(0,2)                                                                            6分

         (2)當a=時由(1)得2sin2θ=                                                     8分

              所以sinθ=,而sin2θ=-cos(+2θ)

                                                 =-2cos2()+1=                               10分

              所以cos2()=,又

              所以cos()=-                                                                 12分

18.(九A解法)解:(1)取AC、CC1中點分別為M、N,連接MN、NB1、MB1,

              ∵AC1∥MN,NB1∥CE

              ∴∠MNB1是CE與AC1成角的補角                                            2分

              Rt△NB1C1中,NB1=

              Rt△MNC中,MN=6

              Rt△MBB1中,MB1=

              ∴cos∠MNB1=-

              ∴CE與AC1的夾角為arccos                                                4分

         (2)過D作DP∥AC交BC于P,則A1D在面BCC1B1上的射影為C1P,而CE⊥A1D,由三垂線定理的逆定理可得CE⊥C1P,又BCC1B為正方形

              ∴P為BC中點,D為AB中點,                                                6分

              ∴CD⊥AB,CD⊥AA1

              ∴CD⊥面ABB1A1                                                                       8分

         (3)由(2)CD⊥面A1DE

              ∴過D作DF⊥A1E于F,連接CF

              由三垂線定理可知CF⊥A1E

              ∴∠CFD為二面角C-A1E-D的平面角                                         10分

              又∵A1D=

              ∴A1D2+DE2=A1E2=324

              ∴∠A1DE=90°

              ∴DF=6,又CD=6

              ∴tan∠CFD=1

              ∴∠CFD=45°

∴二面角C-A1E-D的大小為45°                                                12分

       (此題也可通過建立空間直角坐標系,運用向量的方法求解)

19.解:由已知得:

              不等式x2+px-4x-p+3>0,在p∈[0,4]上恒成立

              即:p(x-1)+x2-4x+3>0,在p∈[0,4]上恒成立

              令f(p)=p(x-1)+x2-4x+3

              則有函數(shù)f(p)在p∈[0,4]上大于零恒成立。                               4分

          (1)顯然當x=1時不恒成立

          (2)當x≠1時,有即x>3或x<-1                             10分

              所以x∈(3+∞)U(-∞,-1)為所求                                                   12分

20.解:(1)ξ=0、1、2、3

                     P(ξ=0)=

                     P(ξ=1)=

                     P(ξ=2)=

                     P(ξ=3)=

                     ∴Eξ=1×                                            6分

(2)設甲考試合格為事件A,乙考試合格為事件B,A、B為相互獨立事件

  P(A)=P(ξ=2)+P(ξ=3)=

  P(B)=

  甲、乙兩人均不合格為事件

  p()=[1-P(A)][1-P(B)]=

  ∴甲、乙兩人至少有一人合各的概率為                                                      12分

21.解:(1)∵AB方程是y=3x+1,則

       得(1+9a2)x2+6a2x=0

       ∴x A =-,同理BC方程是y=-

       可得xc=                                                                                                 2分

       ∴|AB|=|xA-0|?

       |BC|=|xc-0|?                                                                       4分

       ∵|AB|=|BC|

       ∴=解得a2=

       ∴橢圓方程為                                                                                 6分

       (2)設AB:y=kx+1(不妨設k>0且k≠1)代入

       整理得(1+a2k2)x2+a2kx=0

       ∴xA=-,同理xc=                                                                       8分

       ∴|AB|=,

       |BC|=

       又|AB|=|BC|

       ∴整理得

       (k-1)[k2+(1-a2)k+1]=0   (k≠1)

       ∴k2+(1-a2)k+1=0                                                                                             10分

       ∴△=(1-a2)2-4≥0,解得a≥

       若△=0,則a=,此時k2+[1-()2]k+1=0

       k1=k2=1與k≠1矛盾,故a>.                                                                  12分

22.解:(1)由已知有f′(x)=2n

       令f′(x)=0

       得x=±                                                                                              2分

       ∵x∈[0,+∞],∴x=

       ∵0<x<時f′(x)<0

       X>時f′(x)>0

       ∴當x=時,fmin(x)=an=2n

       =                                                                                                        5分

       (2)由已知Tn=cos

                            =                                                                7分

                     ∵                                                            9分

                     ∴π>

                     又y=cosx在(0,π)上是減函數(shù)

                     ∴Tn是遞增的

       ∴Tn<Tn+1(n∈N*)                                                                                            10分

       (3)不存在

         由已知點列An(2n,),顯然滿足y2=x2-1,(x=2n)                                     12分

              即An上的點在雙曲線x2-y2=1上,且在第一象限內(nèi)

              ∴任意三點An、Am、Ap連線的斜率KAnAm,KAnAp,KAmAp均為正值。

              ∴任意兩個量的乘積不可能等于-1

              ∴三角形AnAmAp三個內(nèi)角均無直角

              ∴不可能組成直角三角形。                                                                      14分

 


同步練習冊答案