題目列表(包括答案和解析)
(本小題滿分12分)如圖,在直三棱柱ABC―A1B1C1中,∠ACB = 90°. AC = BC = a,
D、E分別為棱AB、BC的中點, M為棱AA1上的點,二面角M―DE―A為30°.
(1)求MA的長;w.w.w.k.s.5.u.c.o.m
(2)求點C到平面MDE的距離。
(本小題滿分12分)某校高2010級數(shù)學(xué)培優(yōu)學(xué)習(xí)小組有男生3人女生2人,這5人站成一排留影。
(1)求其中的甲乙兩人必須相鄰的站法有多少種? w.w.w.k.s.5.u.c.o.m
(2)求其中的甲乙兩人不相鄰的站法有多少種?
(3)求甲不站最左端且乙不站最右端的站法有多少種 ?
(本小題滿分12分)
某廠有一面舊墻長14米,現(xiàn)在準(zhǔn)備利用這面舊墻建造平面圖形為矩形,面積為126平方米的廠房,工程條件是①建1米新墻費用為a元;②修1米舊墻的費用為元;③拆去1米舊墻,用所得材料建1米新墻的費用為元,經(jīng)過討論有兩種方案: (1)利用舊墻的一段x米(x<14)為矩形廠房一面的邊長;(2)矩形廠房利用舊墻的一面邊長x≥14.問如何利用舊墻,即x為多少米時,建墻費用最省?(1)、(2)兩種方案哪個更好?
(本小題滿分12分)
已知a,b是正常數(shù), a≠b, x,y(0,+∞).
(1)求證:≥,并指出等號成立的條件;w.w.w.k.s.5.u.c.o.m
(2)利用(1)的結(jié)論求函數(shù)的最小值,并指出取最小值時相應(yīng)的x 的值.
(本小題滿分12分)
已知a=(1,2), b=(-2,1),x=a+b,y=-ka+b (kR).
(1)若t=1,且x∥y,求k的值;
(2)若tR +,x?y=5,求證k≥1.
一、選擇題(本大題12小題,每小題5分,共60分)
題號
1
2
3
4
5
6
7
8
9
10
11
12
答案
B
D
D
A
B
C
C
B
C
A
D
A
二、填空題(本大題共4小題,每小題4分,共16分)
13.4949; 14.[] 15.②④; 16.x<0或x>2
三、解答題(本大題共6小題共74分)
17.解(1)設(shè),由,有x+y=-1 ①……………1分
與的夾角為,有,
∴,則x2+y2=1 ②……………2分
由①②解得,(-1,0)或(0,-1) ……………4分
(2)由2B=A+C知B= ……………5分
由垂直知(0,-1),則
……………6分
∴
=1+ ……………8分
∵0<A<
∴-1≤cos(2A+)<
即 ………………10分
故 ………………12分
18.解:(1)過點A作AF⊥CB交CB延長線于點F,連結(jié)EF,則AF,則AF⊥平面BCC1B1,∠AEF為所求直線AE與閏面BCC1B1所成的角. …………………2分
在Rt△AEF中,AF=∠AEF=
故直線AE與平面BCC1B1所成的角為arctan …………………6分
(2)以O為原點,OB為x軸,OC為y軸,建立空間直角坐標(biāo)系O-xyz,則
A(0,-),E(0,),D1(-1,0,2)
…………………8分
設(shè)平面AED1的一個法向量則
取z=2,得=(3,-1,2)
∴點O到平面AED1的呀離為d= …………………12分
19.解(1)由(an+1+an+2+an+3)-(an+an+1+an+2)=1,
∴a1?a4,a7…,a3n-2是首項為1,公差為1的等差數(shù)列,
∴Pn= …………………4分
由
∴b2,b5,b8, …b3n-1是以1為首項,公比為-1的等比數(shù)列
∴Qn= …………………8分
(2)對于Pn≤100Qn
當(dāng)n為偶數(shù)時,不等式顯然不成立;
當(dāng)n為奇數(shù)時, …………………12分
20.解(1)逐個計算,得
P(ξ=-16)=C; …………………1分
P(ξ=8)=C;
P(ξ=24)=C;
P(ξ=32)=C
故該儲蓄所每天余額ξ的 分布列為:
……………………6分
(2)該一天余額ξ的期望Eξ=(-16)×(萬元) …………9分
故儲蓄所每天備用現(xiàn)金至少為14×2=28(萬元) ……………………12分
答:為保證儲戶取款,儲芳所每天備用現(xiàn)金少28萬元。
21.解:(1)有f′(x)|x=1=1,故直線的斜率為1,切點為(1,f(1)),即(1,0)
∴直線l的方程為y=x-1. ……………………1分
直線l與y=g(x)的圖像相切,等價于方程組只有一解,
即方程有兩個相等實根,
∴△=1-4?有丙個相等實根,
(2)∵h(x)=ln(x+1)-x(x>-1),由h′(x)=
∵h′(x)>0,∴-1<x<0
∴當(dāng)x∈(-1,0)時,f(x)是增函數(shù).
即f(x)產(chǎn)單調(diào)遞增區(qū)間為(-1,0). …………………6分
(3)令y1=f(1+x2)-g(x)=ln(1+x2)-
由y1′=
令y1′=0,則x=0,-1,1
當(dāng)x變化時,y1′,y1的變化關(guān)系如下表;
x
(-∞,-1)
-1
(-1,0)
0
(0,1)
1
(1,+∞)
y′
+
0
-
0
+
0
-
y
ㄊ
極大值ln2
ㄋ
極小值1/2
ㄊ
極大值ln2
ㄋ
又因為y1=ln(1+x2)-為偶函數(shù),據(jù)此可畫
出y1=ln(1+x2)-示意圖如下
當(dāng)k∈(ln2,+∞)時,方程無解;
當(dāng)k=ln2或k∈時,方程有兩解;
當(dāng)k=時,方程有三解;
當(dāng)k∈()時,方程有四解. …………………12分
22.(1)設(shè)M(x,y),則由且O是原點得
A(2,0),B(2,1),C(0,1),從而(x,y),
由得(x,y)?(x-2,y)=k[(x,y-1)?(x-2,y-1)-|y-1|2]
即(1-k)x2+2(k-1)x+y2=0為所求軌跡方程 ………………4分
①當(dāng)k=1時,y=0動點M的軌跡是一條直線
②當(dāng)k≠1時,(x-1)2+
k=0時,動點M軌跡是一個圓
k>1時,動點M軌跡是一條雙曲線;
0<k<1或k<0時軌跡是一個橢圓 ………………6分
(2)當(dāng)k=時,動點M的軌跡方程為(x-1)2+2y2=1即y2=-(x-1)2
從而
又由(x-1)2+2y2=1 ∴0≤x≤2
∴當(dāng)x=時,的最大值為.
當(dāng)x=0時,的最大值為16.
∴的最大值為4,最小值為 …………………10分
(3)由由得
①當(dāng)0<k<1時,a2=1,b2=1-k,c2=k
∴e2=k ∴
②當(dāng)k<0時,e2=
∴k∈ …………………14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com