14.已知數(shù)列的前項和比集合的子集個數(shù)少1.則數(shù)列通項公式是 . 查看更多

 

題目列表(包括答案和解析)

給出下列命題:
①關(guān)于x的不等式(a-2)x2+(a-2)x+1>0的解集為R的充要條件是2<a<6;
②我們定義非空集合A的真子集的真子集為A的“孫集”,則集合{1,3,5,7,9}的“孫集”有26個.
③已知f(x)=ax2+bx+c(a≠0),若方程f(x)無實數(shù)根,則方程f[f(x)]=x也一定沒有實數(shù)根;
④若{an}成等比數(shù)列,Sn是前n項和,則S4,S8-S4,S12-S8成等比數(shù)列.
其中正確命題的序號是______.

查看答案和解析>>

給出下列命題:
①關(guān)于x的不等式(a-2)x2+(a-2)x+1>0的解集為R的充要條件是2<a<6;
②我們定義非空集合A的真子集的真子集為A的“孫集”,則集合{1,3,5,7,9}的“孫集”有26個.
③已知f(x)=ax2+bx+c(a≠0),若方程f(x)無實數(shù)根,則方程f[f(x)]=x也一定沒有實數(shù)根;
④若{an}成等比數(shù)列,Sn是前n項和,則S4,S8-S4,S12-S8成等比數(shù)列.
其中正確命題的序號是   

查看答案和解析>>

16、給出下列命題:
①關(guān)于x的的不等式(a-2)x2+(a-2)x+1>0的解集為R的充要條件是2<a<6;
②我們定義非空集合A的真子集的真子集為A的“孫集”,則集合{1,3,5,7,9}的“孫集”有26個.
③已知f(x)=ax2+bx+c(a≠0),若方程f(x)無實數(shù)根,則方程f[f(x)]=x也一定沒有實數(shù)根;
④若{an}成等比數(shù)列,Sn是前n項和,則S4,S8-S4,S12-S8成等比數(shù)列.
其中正確命題的序號是
②③④

查看答案和解析>>

命題1)若是偶函數(shù),其定義域是,則在區(qū)間是減函數(shù)。

2)如果一個數(shù)列的前n項和則此數(shù)列是等比數(shù)列的充要條件是

3)曲線過點(1,3)處的切線方程為: 。

4)已知集合只有一個子集。則

以上四個命題中,正確命題的序號是__________

 

查看答案和解析>>

命題1)若是偶函數(shù),其定義域是,則在區(qū)間是減函數(shù)。
2)如果一個數(shù)列的前n項和則此數(shù)列是等比數(shù)列的充要條件是
3)曲線過點(1,3)處的切線方程為: 。
4)已知集合只有一個子集。則
以上四個命題中,正確命題的序號是__________

查看答案和解析>>

1.解析:,故選A。

2.解析:抽取回族學(xué)生人數(shù)是,故選B。

3.解析:由,得,此時,所以,,故選C。

4.解析:∵∥,∴,∴,故選C。

5.解析:設(shè)公差為,由題意得,;,解得或,故選C。

6.解析:∵雙曲線的右焦點到一條漸近線的距離等于焦距的,∴,又∵,∴,∴雙曲線的漸近線方程是,故選D.

7.解析:∵、為正實數(shù),∴,∴;由均值不等式得恒成立,,故②不恒成立,又因為函數(shù)在是增函數(shù),∴,故恒成立的不等式是①③④。故選C.

8.解析:∵,∴在區(qū)間上恒成立,即在區(qū)間上恒成立,∴,故選D。

9.解析:∵

,∴此函數(shù)的最小正周期是,故選C。

10.解析:如圖,∵正三角形的邊長為,∴,∴,又∵,∴,故選D。

11.解析:∵在區(qū)間上是增函數(shù)且,∴其反函數(shù)在區(qū)間上是增函數(shù),∴,故選A

12.解析:如圖,①當或時,圓面被分成2塊,涂色方法有20種;②當或時,圓面被分成3塊,涂色方法有60種;

③當時,圓面被分成4塊,涂色方法有120種,所以m的取值范圍是,故選A。

13.解析:將代入結(jié)果為,∴時,表示直線右側(cè)區(qū)域,反之,若表示直線右側(cè)區(qū)域,則,∴是充分不必要條件。

14.解析:∵,∴時,,又時,滿足上式,因此,。

15.解析:設(shè)正四面體的棱長為,連,取的中點,連,∵為的中點,∴∥,∴或其補角為與所成角,∵,,∴,∴,又∵,∴,∴與所成角的余弦值為。

16.解析:∵,∴,∵點為的準線與軸的交點,由向量的加法法則及拋物線的對稱性可知,點為拋物線上關(guān)于軸對稱的兩點且做出圖形如右圖,其中為點到準線的距離,四邊形為菱形,∴,∴,∴,∴,∴,∴向量與的夾角為。

17.(10分)解析:(Ⅰ)由正弦定理得,,,…2分

∴,,………4分

(Ⅱ)∵,,∴,∴,………………………6分

又∵,∴,∴,………………………8分

∴!10分

18.解析:(Ⅰ)∵,∴;……………………理3文4分

(Ⅱ)∵三科會考不合格的概率均為,∴學(xué)生甲不能拿到高中畢業(yè)證的概率;……………………理6文8分

(Ⅲ)∵每科得A,B的概率分別為,∴學(xué)生甲被評為三好學(xué)生的概率為!12分

19.(12分)解析:(Ⅰ)∵,∴,

 ,,………………………3分

(Ⅱ)∵,∴,

∴,

又,∴數(shù)列自第2項起是公比為的等比數(shù)列,………………………6分

∴,………………………8分

(Ⅲ)∵,∴,………………………10分

∴。………………………12分

20.解析:(Ⅰ)∵∥,,∴,∵底面,∴,∴平面,∴,又∵平面,∴,∴平面,∴。………………………4分

(Ⅱ)∵平面,∴,,∴為二面角的平面角,………………………6分

,,∴,又∵平面,,∴,∴二面角的正切值的大小為。………………………8分

(Ⅲ)過點做∥,交于點,∵平面,∴為在平面內(nèi)的射影,∴為與平面所成的角,………………………10分

∵,∴,又∵∥,∴和與平面所成的角相等,∴與平面所成角的正切值為!12分

解法2:如圖建立空間直角坐標系,(Ⅰ)∵,,∴點的坐標分別是,,,∴,,設(shè),∵平面,∴,∴,取,∴,∴!4分

(Ⅱ)設(shè)二面角的大小為,∵平面的法向量是,平面的法向量是,∴,∴,∴二面角的正切值的大小為!8分

(Ⅲ)設(shè)與平面所成角的大小為,∵平面的法向量是,,∴,∴,∴與平面所成角的正切值為!12分

21.解析:(Ⅰ)設(shè)拋物線方程為,將代入方程得

所以拋物線方程為。………………………2分

由題意知橢圓的焦點為、。

設(shè)橢圓的方程為,

∵過點,∴,解得,,,

∴橢圓的方程為!5分

(Ⅱ)設(shè)的中點為,的方程為:,

以為直徑的圓交于兩點,中點為。

設(shè),則

∵  

………………………8分

 

………………………10分

當時,,,

此時,直線的方程為。………………………12分

22.(12分)解析:(Ⅰ)∵是偶函數(shù),∴,

又∵∴,,………………………2分

由得,,

∵時,;時,;時,;∴時,函數(shù)取得極大值,時,函數(shù)取得極小值!5分

(Ⅱ)∵在區(qū)間上為增函數(shù),∴在上恒成立,∴

且在區(qū)間上恒成立,………………………7分

∴……………………9分

又∵=,∵

∴,∴的取值范圍是!12分

 

 

 

 

 

 


同步練習(xí)冊答案