直線與圓交于.兩點.以軸的正半軸為始邊.為終邊(為坐標原點)的角為.為終邊的角為.則的值 . 查看更多

 

題目列表(包括答案和解析)

已知拋物線在x軸的正半軸上,過M的直線與C相交于A、B兩點,O為坐標原點。

   (I)若m=1,且直線的斜率為1,求以AB為直徑的圓的方程;

   (II)問是否存在定點M,不論直線繞點M如何轉(zhuǎn)動,使得恒為定值。

查看答案和解析>>

在x軸上方的線段ABy軸正半軸于一點M(0,m),AB所在直線的斜率為k(k>0),點A在第一象限,兩端點A、By軸的距離的差為4k.以y軸為對稱軸,過AOB三點的拋物線記為C

(Ⅰ)求拋物線C的方程;

(Ⅱ)設(shè)直線AB的方程為x-2y+12=0,過A、B兩點的圓與拋物線CA點處有共同的切線,直線ax-by+1=0(a>0,b>0)始終平分該圓的面積,求ab的最大值.

查看答案和解析>>

以直角坐標系的原點O為極點,x軸的正半軸為極軸,且兩個坐標系取相等的單位長度.已知直線l經(jīng)過點P(1,1),傾斜角α=
π6

(I)寫出直線l的參數(shù)方程;
(II)設(shè)l與圓ρ=2相交于兩點A、B,求點P到A、B兩點的距離之積.

查看答案和解析>>

以直角坐標系的原點O為極點,x軸的正半軸為極軸,且兩個坐標系取相等的單位長度.已知直線經(jīng)過點P(1,1),傾斜角

(1)寫出直線的參數(shù)方程;

(2)設(shè)與圓相交于兩點A、B,求點P到A、B兩點的距離之積.

 

查看答案和解析>>

以直角坐標系的原點O為極點,x軸的正半軸為極軸,且兩個坐標系取相等的單位長度。已知直線經(jīng)過點P(1,1),傾斜角α=;
(1)寫出直線l參數(shù)方程;
(2)設(shè)l與圓ρ=2相交于兩點A、B,求點P到A、B兩點的距離之積。

查看答案和解析>>

一、選擇題

DDDCC         CDAAB

二、填空題

11、           12、        13、     14、17    0     15、②③

三、解答題

16、⑴

         

      

 

17、(1),其定義域為.

.……………………………………………………2′

當(dāng)時,當(dāng)時,故當(dāng)且僅當(dāng)時,.   6′

(2)

由(1)知,     …………………………9′

…………………………………………12′′18、(1)符合二項分布

0

1

2

3

4

5

6

……6′

(2)可取15,16,18.

*表示勝5場負1場,;………………………………7′

表示勝5場平1場,;………………………………8′

*表示6場全勝,.……………………………………………9′

.………………………………………………………………12(

19、解:(1)以所在直線為軸,以所在直線為軸,以所在直線為軸,建立如圖所示的空間直角坐標系,由題意可知、………2′

                   的坐標為     

,              

                      而,

的公垂線…………………………………………………………4′

(2)令面的法向量,

,則,即而面的法向量

……6′ ∴二面角的大小為.……8′

(3)    面的法向量為     到面的距離為

     即到面的距離為.…………12′

20、解:(1)假設(shè)存在,使,則,同理可得,以此類推有,這與矛盾。則不存在,使.……3分

(2)∵當(dāng)時,

,,則

相反,而,則.以此類推有:

,;……7分

(3)∵當(dāng)時,,,則

 …9分

。)……10分

.……12分

21、解(1)設(shè)     

          

①-②得

   ……………………2′

直線的方程是  整理得………………4′

(2)聯(lián)立解得

設(shè)

的方程為聯(lián)立消去,整理得

………………………………6′

 

          又

…………………………………………8′

(3)直線的方程為,代入,得

………………………………………………10′

三點共線,三點共線,且在拋物線的內(nèi)部。

故由可推得

  同理可得:

………………………………14′

 

 


同步練習(xí)冊答案