(Ⅰ)求角的度數(shù), 查看更多

 

題目列表(包括答案和解析)

(Ⅰ)如果三段的長度均為整數(shù),求能構成三角形的概率;

(Ⅱ)如果把鐵絲截成2,2,3的三段放入一個盒子中,然后有放回地摸4次,設摸到長度為2的次數(shù)為,求;

(Ⅲ)如果截成任意長度的三段,求能構成三角形的概率.

查看答案和解析>>


(Ⅰ)如果三段的長度均為整數(shù),求能構成三角形的概率;
(Ⅱ)如果把鐵絲截成2,2,3的三段放入一個盒子中,然后有放回地摸4次,設摸到長度為2的次數(shù)為,求;
(Ⅲ)如果截成任意長度的三段,求能構成三角形的概率.

查看答案和解析>>

(2012•石家莊一模)要測量河對岸的煙囪AB,而測量者又不能到達它的底部,現(xiàn)有測角儀和鋼卷尺兩種測量工具,請你設計一種測量方案.要求
(I)畫出圖形,指出要測量的數(shù)據(用字母表示并在圖中標出);
(II)用文字和公式寫出計算煙囪高AB的步驟(測角儀的高度忽略不計)

查看答案和解析>>

(2012•洛陽模擬)選修4-4:坐標系與參數(shù)方程
在直角坐標系xOy中,直線l經過點P(-1,0),其傾斜角為α,以原點O為極點,以x軸非負半軸為極軸,與直角坐標系xOy取相同的長度單位,建立極坐標系.設曲線C的極坐標方程為ρ2-6ρcosθ+5=0.
(1)若直線l與曲線C有公共點,求α的取值范圍;
(2)設M(x,y)為曲線C上任意一點,求x+y的取值范圍.

查看答案和解析>>

(2009•金山區(qū)二模)(1)設u、v為實數(shù),證明:u2+v2
(u+v)2
2
;(2)請先閱讀下列材料,然后根據要求回答問題.
材料:已知△LMN內接于邊長為1的正三角形ABC,求證:△LMN中至少有一邊的長不小于
1
2

證明:線段AN、AL、BL、BM、CM、CN的長分別設為a1、a2、b1、b2、c1、c2,設LN、LM、MN的長為x、y、z,
x2=a12+a22-2a1a2cos60°=a12+a22-a1a2
同理:y2=b12+b22-b1b2,z2=c12+c22-c1c2,
x2+y2+z2=a12+a22+b12+b22+c12+c22-a1a2-b1b2-c1c2

請利用(1)的結論,把證明過程補充完整;
(3)已知n邊形A1′A2′A3′…An′內接于邊長為1的正n邊形A1A2…An,(n≥4),思考會有相應的什么結論?請?zhí)岢鲆粋的命題,并給與正確解答.
注意:第(3)題中所提問題單獨給分,解答也單獨給分.本題按照所提問題的難度分層給分,解答也相應給分,如果同時提出兩個問題,則就高不就低,解答也相同處理.

查看答案和解析>>

一、選擇題:(本大題12個小題,每小題5分,共60分)

CDAB,DABC,CBDA

二、填空題:(本大題4個小題,每小題4分,共16分)

13.0;    14.3;    15.3;     16.10

三、解答題:(本大題6個小題,共74分)

17.(12分)

解:(Ⅰ)由已知等式得:…………(2分)

 ………………(5分)

………………………………………………………………(6分)

(Ⅱ)……………………………………(8分)

……………………(11分)

………………………………………………………………(12分)

18.(12分)

解:由

………………………………(2分)

①當時,;……………………………(6分)

②當時,;…………………………………………(8分)

③當時,。………………………………(11分)

綜上,當時,;

時,;

時,。………………………(12分)

19.(12分)

解:(Ⅰ)

………………………………(7分)

(Ⅱ)

………………………(12分)

20.(12分)

解:設商場分配給超市部、服裝部、家電部的營業(yè)額依次為萬元,萬元,萬元(均為正整數(shù)),由題意得:

………………………………(5分)

由(1),(2)得………………………………(7分)

………………………………(8分)

………………………………(9分)

………………(11分)

答:分配給超市部、服裝部、家電部的營業(yè)額分別為12萬元,22萬元,21萬元,售貨員人數(shù)分別為48人,110人,42人;或者分配給三部門的營業(yè)額依次為15萬元,20萬元,20萬元,售貨員人數(shù)分別為60人,100人,40人!12分)

21.(12分)

解:(Ⅰ)設拋物線頂點為,則拋物線的焦點為,由拋物線的定義可得:

……………………………(6分)

(Ⅱ)不存在!7分)

設過點,斜率為的直線方程為(斜率不存在時,顯然不合題意),………………………………………………………………………………(8分)

…………………………(9分)

………………………………………………………(10分)

假設在軌跡上存在兩點,令的斜率分別為,則

顯然不可能滿足

∴軌跡上不存在滿足的兩點!12分)

22.(14分)

(Ⅰ)解:由,可以化為:

………………………………(1分)

從而…………………………………………………………(3分)

又由已知,得:

 ,  即 

∴數(shù)列是首項為,公差為的等差數(shù)列,…………………………(4分)

……………………(8分)

(Ⅱ)證明:……(9分)

(12分)

(Ⅲ)解:由于,若恒成立

………………………………(14分)

     

 


同步練習冊答案