15.已知點(diǎn)是圓上任一點(diǎn).點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)也在圓上.那么實(shí)數(shù)等于 . 查看更多

 

題目列表(包括答案和解析)

已知點(diǎn)是圓上任意一點(diǎn),點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)在圓上,則實(shí)數(shù)等于(   )

A.B.C.D.

查看答案和解析>>

已知點(diǎn)是圓上任意一點(diǎn)點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)在圓上,則實(shí)數(shù)等于(   )

A. B. C. D.

 

查看答案和解析>>

已知點(diǎn)是圓上任意一點(diǎn),點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)在圓上,則實(shí)數(shù)等于(   )
A.B.C.D.

查看答案和解析>>

已知點(diǎn)P是圓C:x2+y2+4x+ay-5=0上任意一點(diǎn),P點(diǎn)關(guān)于直線2x+y-1=0的對(duì)稱點(diǎn)在圓上,則實(shí)數(shù)a等于
-10
-10

查看答案和解析>>

已知點(diǎn)A(-1,0)、B(1,0),P(x0,y0)是直線y=x+2上任意一點(diǎn),以A、B為焦點(diǎn)的橢圓過(guò)點(diǎn)P.記橢圓離心率e關(guān)于x0的函數(shù)為e(x0),函數(shù)e(x0)的最大值是
10
5
10
5

查看答案和解析>>

一、選擇題:(本大題12個(gè)小題,每小題5分,共60分)

CDAB,DABC,CBDA

二、填空題:(本大題4個(gè)小題,每小題4分,共16分)

13.0;    14.3;    15.3;     16.10

三、解答題:(本大題6個(gè)小題,共74分)

17.(12分)

解:(Ⅰ)由已知等式得:…………(2分)

 ………………(5分)

………………………………………………………………(6分)

(Ⅱ)……………………………………(8分)

……………………(11分)

………………………………………………………………(12分)

18.(12分)

解:由

………………………………(2分)

①當(dāng)時(shí),;……………………………(6分)

②當(dāng)時(shí),;…………………………………………(8分)

③當(dāng)時(shí),。………………………………(11分)

綜上,當(dāng)時(shí),;

當(dāng)時(shí),;

當(dāng)時(shí),!12分)

19.(12分)

解:(Ⅰ)

………………………………(7分)

(Ⅱ)

………………………(12分)

20.(12分)

解:設(shè)商場(chǎng)分配給超市部、服裝部、家電部的營(yíng)業(yè)額依次為萬(wàn)元,萬(wàn)元,萬(wàn)元(均為正整數(shù)),由題意得:

………………………………(5分)

由(1),(2)得………………………………(7分)

………………………………(8分)

………………………………(9分)

………………(11分)

答:分配給超市部、服裝部、家電部的營(yíng)業(yè)額分別為12萬(wàn)元,22萬(wàn)元,21萬(wàn)元,售貨員人數(shù)分別為48人,110人,42人;或者分配給三部門的營(yíng)業(yè)額依次為15萬(wàn)元,20萬(wàn)元,20萬(wàn)元,售貨員人數(shù)分別為60人,100人,40人。……………………(12分)

21.(12分)

解:(Ⅰ)設(shè)拋物線頂點(diǎn)為,則拋物線的焦點(diǎn)為,由拋物線的定義可得:

……………………………(6分)

(Ⅱ)不存在!7分)

設(shè)過(guò)點(diǎn),斜率為的直線方程為(斜率不存在時(shí),顯然不合題意),………………………………………………………………………………(8分)

…………………………(9分)

………………………………………………………(10分)

假設(shè)在軌跡上存在兩點(diǎn),令的斜率分別為,則

顯然不可能滿足

∴軌跡上不存在滿足的兩點(diǎn)!12分)

22.(14分)

(Ⅰ)解:由,可以化為:

………………………………(1分)

從而…………………………………………………………(3分)

又由已知,得:

 ,  即 

∴數(shù)列是首項(xiàng)為,公差為的等差數(shù)列,…………………………(4分)

……………………(8分)

(Ⅱ)證明:……(9分)

(12分)

(Ⅲ)解:由于,若恒成立

………………………………(14分)

     

 


同步練習(xí)冊(cè)答案