18.甲與乙兩人擲硬幣.甲用一枚硬幣擲3次.記下國徽面向上的次數(shù)為闂傚倷鑳堕崑銊╁磿婵犳碍鍤堢憸鐗堝笒閻掑灚銇勯幒鎴敾閻庢熬鎷�查看更多

 

題目列表(包括答案和解析)

甲與乙兩人擲硬幣,甲用一枚硬幣擲3次,記下國徽面朝上的次數(shù)為m;乙用一枚硬幣擲2次,記下國徽面朝上的次數(shù)為n.
(1)算國徽面朝上不同次數(shù)的概率并填入下表:精英家教網(wǎng)
(2)現(xiàn)規(guī)定:若m>n,則甲勝;若n≥m,則乙勝.你認(rèn)為這種規(guī)定合理嗎?為什么?

查看答案和解析>>

甲與乙兩人擲硬幣,甲用一枚硬幣擲3次,記下國徽面(記為正面)朝上的次數(shù)為m;乙用一枚硬幣擲2次,記下國徽面(記為正面)朝上的次數(shù)為n.

(1)填寫下列兩表:

正面向上次數(shù)m

3

2

1

0

概率P(m)

 

 

 

 

 

正面向上次數(shù)n

2

1

0

概率P(n)

 

 

 

(2)若規(guī)定m >n時,甲勝.求甲獲勝的概率.

查看答案和解析>>

甲與乙兩人擲硬幣,甲用一枚硬幣擲3次,記正面朝上的次數(shù)為;乙用這枚硬幣擲2次,記正面朝上的次數(shù)為。

(1)分別求的期望;

(2)規(guī)定:若,則甲獲勝;若,則乙獲勝,分別求出甲和乙獲勝的概率.

 

查看答案和解析>>

甲與乙兩人擲硬幣,甲用一枚硬幣擲3次,記正面朝上的次數(shù)為;乙用這枚硬幣擲2次,記正面朝上的次數(shù)為。
(1)分別求的期望;
(2)規(guī)定:若,則甲獲勝;若,則乙獲勝,分別求出甲和乙獲勝的概率.

查看答案和解析>>

甲與乙兩人擲硬幣,甲用一枚硬幣擲3次,記下國徽面朝上的次數(shù)為m;乙用一枚硬幣擲2次,記下國徽面朝上的次數(shù)為n.
(1)算國徽面朝上不同次數(shù)的概率并填入下表:
(2)現(xiàn)規(guī)定:若m>n,則甲勝;若n≥m,則乙勝.你認(rèn)為這種規(guī)定合理嗎?為什么?

查看答案和解析>>

 

一.選擇

1.  選B  滿足f[f(x)]=x有2個  ①1→1,2→2  ②1→2,2→1

2.  選C  只需注意

3.  選C    當(dāng)時 

4.  選D  分組(1),(2,2),(3,3,3),(4,4,4,4)……

          前13組共用去1+2+……+13=個數(shù),而第14組有14個數(shù),

故第100項是在第14組中.

5.  選D  由于0<a<b   有f(a)=f(b)  故0<a<, b>

即 f(a)=2-a2 , f(b)=b2-2

          由2-a2= b2-2得到a2+b2=4且a≠b  ∴0<ab<2

6.選B   由已知  ∴  ∴.

7.選D   由.

8.選C   設(shè)正方體的邊長為a,當(dāng)截面為菱形,即過相對棱(如AA1及CC1)時,

面積最小, 此時截面為邊長,兩對角線分別為的菱形,

此時,當(dāng)截面過兩相對棱(如BC及A1D1)時截面積最大,

此時  ∴

  • 1

    10.選D   按兩相對面是否同色分類 ①兩相對面不同色4

    ②兩相對面同色

    ∴共有4+=96

    11.選D   注意到    sinx 

                         sinx 

                     且當(dāng)x=0,,時,

    12.選A   任取, 則由得到

              

             

     

      故f(x)在R上是單調(diào)增函數(shù)

    二.填空

    13.16   設(shè)ξ表示這個班的數(shù)學(xué)成績,則ξ~N(80,102),設(shè)Z= ,則Z~N(0,1)

          P(80<ξ<90=P(0<Z<1=

          而48×0.3413=16.3824   故應(yīng)為16人

    14.129 令x=1  及  而a0=-1  ∴

    15.①②④⑤   對于③當(dāng)x=時就不能取到最大值

    16.     3人傳球基本事件總數(shù)為25=32,經(jīng)過5次傳球,球恰好回到甲手中有三類

              ①甲□甲□□      共2×2=4種

    ②甲□□甲□甲    共2×2=4種

    ③甲□□□□甲    共2種

         ∴概率為

    三.解答題

    17.解:……4分

     (1)T=                                           …………………………6分

     (2)當(dāng)時f(x)取最小值-2         ……………………………9分

     (3)令  ………………12分

    18.解:(1)

    正面向上次數(shù)m

    3

    2

    1

    <tbody id="o2cm2"></tbody>
  • <li id="o2cm2"><input id="o2cm2"></input></li>
  • …………3分

    概率P(m)

     

    正面向上次數(shù)n

    2

    1

  • <td id="o2cm2"><center id="o2cm2"></center></td>

        …………6分

        概率P(n)

         

          (2)若m>n,則有三種情形          ………………………………………………7分

               m=3時,n=2,1,0  ,          ………………………8分

               m=2時,n=1,0  ,          ……………………………9分

               m=1時,n=0  ,              ……………………………10分

         ∴甲獲勝概率P==     ………………………………12分

         

        19.(1)由  ∴   …………3分

           ∵f(x)的定義域為x≥1  ∴≥1    ……………4分

        ∴當(dāng)a>1時,≥0     ∴f(x) ≥0

        當(dāng)0<a<1時,≤0   ∴f(x)≤0

        ∴當(dāng)a>1,                   …………………………5分

        當(dāng)0<a<1時,          ………………………………6分

        (2)由(1)知

         ∴

                         …………………………7分

        設(shè)函數(shù)      在<0,>0

        ∴在  為增函數(shù)                ……………………………8分

        ∴當(dāng)1<a<2時,          ………………………………………10分

            =

            =<2n        ……………………12分

        20.(1)證:延長B1E交BC于F,∵△B1EC1∽△FEB,BE=EC1,∴BF=,

        從而F為BC的中點,           …………………………………………………………3分

        ∵G是△ABC的重心,∴A、G、F三點共線

            ∴∥AB1         ……………………………………………5分

        又GE側(cè)面AA1B1B,∴GE∥側(cè)面AA1B1B        ……………………………………6分

         

        (2)解:過A1作A1O⊥AB交于O,由已知可知∠A1AO=60°

        ∴O為AB的中點,         ………………………………………………………………7分

        連OC,作坐標(biāo)系O-xyz如圖易知平面ABC的法向量     ………………8分

        A(0,?1,0),F(xiàn)(),  B1(0,2,)

        ,          ………………………………9分

        設(shè)平面B1GE的法向量為

        平面B1GE也就是平面AB1F

        可取   ………………………………………………10分

        ∴二面角(銳角)的余弦cosθ=

        ∴二面角(銳角)為        ………………………………………………12分

        21.(1)由于  O為原點,∴…………1分

        ∴L : x =?2  由題意  動點P到定點B的距離和到定直線的距離相等,

        故點P的 軌跡是以B為焦點L為準(zhǔn)線的拋物線    ……………………………………2分

        ∴動點P的軌跡為y2=8x                ………………………………………………4分

        (2)由  消去y 得到      ………………6分

        設(shè)M(x1 , y1)  N(x2 , y2),則根據(jù)韋達(dá)定理得

        其中k>0                                               ………………………7分

             ………………8分

          

        ≥17   ∴0<k≤1   ∴0<≤1       ………………………………9分

        ∴直線m的傾斜角范圍是(0,       ……………………………………………10分

        ②由于  ∴Q是線段MN的中點      …………………………………11分

        令Q(x0, y0)  則,

          從而

                       …………………………………………12分

          即

          由于k>0

                   ……………………………………………………………14分

        22.(1)兩邊取自然對數(shù) blna>alnb 即

        ∴原不等式等價于    設(shè)(x>e)

          x>e時,<0  ∴在(e , +∞)上為減函數(shù),

        由e<a<b   ∴f(a)>f(b)   ∴

        得證                   ……………………………………………………6分

        (2)由(1)可知,在(0,1)上為增函數(shù)

        由f(a)=f(b)   ∴a=b               ……………………………………………………8分

        (3)由(1)知,當(dāng)x∈(0,e)時,>0,當(dāng)x∈(e,+∞)時,<0

        >0           …………………………10分

        其中   ∴a=4 , b=2  或a=2 , b=4          ……………………………12分


        同步練習(xí)冊答案
        闂傚倷鑳舵灙濡ょ姴绻橀獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磻婵犲洤绠柨鐕傛嫹