17.=sin(2x+. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=sin(
π
2
x+θ)cos(
π
2
+θ),x∈R,θ
是常數(shù),當(dāng)x=1時f(x)取最大值,則θ的一個值是( 。
A、
π
4
B、
π
2
C、
4
D、π

查看答案和解析>>

已知函數(shù)f(x)=sin(2x-
π6
)
+2cos2x.
(1)求f(x)的最大值以及使f(x)取得最大值的x的集合;
(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

已知函數(shù)f(x)=sin(2x+
π
6
)+sin(2x-
π
6
)
+cos2x+a(a∈R,a為常數(shù)).
(Ⅰ)求函數(shù)的最小正周期;
(Ⅱ)求函數(shù)的單調(diào)遞減區(qū)間;
(Ⅲ)若x∈[0,
π
2
]
時,f(x)的最小值為-2,求a的值.

查看答案和解析>>

已知函數(shù)f(x)=sin(2x-
π
6
)+1
,則f(x)的圖象的一條對稱軸的方程是( 。
A、x=
3
B、x=
π
2
C、x=
π
3
D、x=
π
6

查看答案和解析>>

已知函數(shù)f(x)=sin(2x+
π
6
)+sin(2x-
π
6
)-2cos2x

(Ⅰ)求函數(shù)f(x)的值域及最小正周期;
(Ⅱ)求函數(shù)y=f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

 

一.選擇

1.  選B  滿足f[f(x)]=x有2個  ①1→1,2→2  ②1→2,2→1

2.  選C  只需注意

3.  選C    當(dāng)時 

4.  選D  分組(1),(2,2),(3,3,3),(4,4,4,4)……

          前13組共用去1+2+……+13=個數(shù),而第14組有14個數(shù),

故第100項是在第14組中.

5.  選D  由于0<a<b   有f(a)=f(b)  故0<a<, b>

即 f(a)=2-a2 , f(b)=b2-2

          由2-a2= b2-2得到a2+b2=4且a≠b  ∴0<ab<2

6.選B   由已知  ∴  ∴.

7.選D   由.

8.選C   設(shè)正方體的邊長為a,當(dāng)截面為菱形,即過相對棱(如AA1及CC1)時,

面積最小, 此時截面為邊長,兩對角線分別為的菱形,

此時,當(dāng)截面過兩相對棱(如BC及A1D1)時截面積最大,

此時  ∴

1

10.選D   按兩相對面是否同色分類 ①兩相對面不同色4

②兩相對面同色

∴共有4+=96

11.選D   注意到    sinx 

                     sinx 

                 且當(dāng)x=0,,時,

12.選A   任取 則由得到

          

         

 

  故f(x)在R上是單調(diào)增函數(shù)

二.填空

13.16   設(shè)ξ表示這個班的數(shù)學(xué)成績,則ξ~N(80,102),設(shè)Z= ,則Z~N(0,1)

      P(80<ξ<90=P(0<Z<1=

      而48×0.3413=16.3824   故應(yīng)為16人

14.129 令x=1  及  而a0=-1  ∴

15.①②④⑤   對于③當(dāng)x=時就不能取到最大值

16.     3人傳球基本事件總數(shù)為25=32,經(jīng)過5次傳球,球恰好回到甲手中有三類

          ①甲□甲□□      共2×2=4種

②甲□□甲□甲    共2×2=4種

③甲□□□□甲    共2種

     ∴概率為

三.解答題

17.解:……4分

 (1)T=                                           …………………………6分

 (2)當(dāng)時f(x)取最小值-2         ……………………………9分

 (3)令  ………………12分

18.解:(1)

正面向上次數(shù)m

3

2

1

…………3分

概率P(m)

 

正面向上次數(shù)n

2

1

<big id="k9bn3"></big>

      <ol id="k9bn3"><tbody id="k9bn3"></tbody></ol>

      …………6分

      概率P(n)

       

        (2)若m>n,則有三種情形          ………………………………………………7分

             m=3時,n=2,1,0  ,          ………………………8分

             m=2時,n=1,0  ,          ……………………………9分

             m=1時,n=0  ,              ……………………………10分

       ∴甲獲勝概率P==     ………………………………12分

       

      19.(1)由  ∴   …………3分

         ∵f(x)的定義域為x≥1  ∴≥1    ……………4分

      ∴當(dāng)a>1時,≥0     ∴f(x) ≥0

      當(dāng)0<a<1時,≤0   ∴f(x)≤0

      ∴當(dāng)a>1,                   …………………………5分

      當(dāng)0<a<1時,          ………………………………6分

      (2)由(1)知

       ∴

                       …………………………7分

      設(shè)函數(shù)      在<0,>0

      ∴在  為增函數(shù)                ……………………………8分

      ∴當(dāng)1<a<2時,          ………………………………………10分

          =

          =<2n        ……………………12分

      20.(1)證:延長B1E交BC于F,∵△B1EC1∽△FEB,BE=EC1,∴BF=

      從而F為BC的中點,           …………………………………………………………3分

      ∵G是△ABC的重心,∴A、G、F三點共線

          ∴∥AB1         ……………………………………………5分

      又GE側(cè)面AA1B1B,∴GE∥側(cè)面AA1B1B        ……………………………………6分

       

      (2)解:過A1作A1O⊥AB交于O,由已知可知∠A1AO=60°

      ∴O為AB的中點,         ………………………………………………………………7分

      連OC,作坐標(biāo)系O-xyz如圖易知平面ABC的法向量     ………………8分

      A(0,?1,0),F(xiàn)(),  B1(0,2,)

      ,          ………………………………9分

      設(shè)平面B1GE的法向量為

      平面B1GE也就是平面AB1F

      可取   ………………………………………………10分

      ∴二面角(銳角)的余弦cosθ=

      ∴二面角(銳角)為        ………………………………………………12分

      21.(1)由于  O為原點,∴…………1分

      ∴L : x =?2  由題意  動點P到定點B的距離和到定直線的距離相等,

      故點P的 軌跡是以B為焦點L為準(zhǔn)線的拋物線    ……………………………………2分

      ∴動點P的軌跡為y2=8x                ………………………………………………4分

      (2)由  消去y 得到      ………………6分

      設(shè)M(x1 , y1)  N(x2 , y2),則根據(jù)韋達定理得

      其中k>0                                               ………………………7分

           ………………8分

        

      ≥17   ∴0<k≤1   ∴0<≤1       ………………………………9分

      ∴直線m的傾斜角范圍是(0,       ……………………………………………10分

      ②由于  ∴Q是線段MN的中點      …………………………………11分

      令Q(x0, y0)  則,

        從而

                     …………………………………………12分

        即

        由于k>0

                 ……………………………………………………………14分

      22.(1)兩邊取自然對數(shù) blna>alnb 即

      ∴原不等式等價于    設(shè)(x>e)

        x>e時,<0  ∴在(e , +∞)上為減函數(shù),

      由e<a<b   ∴f(a)>f(b)   ∴

      得證                   ……………………………………………………6分

      (2)由(1)可知,在(0,1)上為增函數(shù)

      由f(a)=f(b)   ∴a=b               ……………………………………………………8分

      (3)由(1)知,當(dāng)x∈(0,e)時,>0,當(dāng)x∈(e,+∞)時,<0

      >0           …………………………10分

      其中   ∴a=4 , b=2  或a=2 , b=4          ……………………………12分


      同步練習(xí)冊答案