(2)當(dāng)時.若.求n的最小值. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)的最小值為0,其中

(Ⅰ)求的值;

(Ⅱ)若對任意的成立,求實數(shù)的最小值;

(Ⅲ)證明).

【解析】(1)解: 的定義域為

,得

當(dāng)x變化時,,的變化情況如下表:

x

-

0

+

極小值

因此,處取得最小值,故由題意,所以

(2)解:當(dāng)時,取,有,故時不合題意.當(dāng)時,令,即

,得

①當(dāng)時,,上恒成立。因此上單調(diào)遞減.從而對于任意的,總有,即上恒成立,故符合題意.

②當(dāng)時,,對于,故上單調(diào)遞增.因此當(dāng)取時,,即不成立.

不合題意.

綜上,k的最小值為.

(3)證明:當(dāng)n=1時,不等式左邊==右邊,所以不等式成立.

當(dāng)時,

                      

                      

在(2)中取,得 ,

從而

所以有

     

     

     

     

      

綜上,,

 

查看答案和解析>>

已知函數(shù)的最小值為

(Ⅰ)求

(Ⅱ)是否存在實數(shù)m,n同時滿足下列條件:

①m>n>3;

②當(dāng)的定義域為[n,m]時,值域為[n2,m2]?

若存在,求出m,n的值;若不存在,說明理由.

查看答案和解析>>

已知函數(shù)的最小值為

(Ⅰ)求

(Ⅱ)是否存在實數(shù)m,n同時滿足下列條件:

①     m>n>3;

②     ②當(dāng)的定義域為[n,m]時,值域為[n2,m2]?

 若存在,求出m,n的值;若不存在,說明理由.

查看答案和解析>>

已知,若過定點、以(λ∈R)為法向量的直線l1與過點為法向量的直線l2相交于動點P.
(1)求直線l1和l2的方程;
(2)求直線l1和l2的斜率之積k1k2的值,并證明必存在兩個定點E,F(xiàn),使得恒為定值;
(3)在(2)的條件下,若M,N是上的兩個動點,且,試問當(dāng)|MN|取最小值時,向量是否平行,并說明理由.

查看答案和解析>>

已知函數(shù),函數(shù)的最小值為。

(1)求的表達(dá)式。   

(2)是否存在實數(shù)m,n同時滿足以下條件:

① m>n>3;    

② 當(dāng)的定義域為[m,n]時,值域為

若存在,求出m,n的值;若不存在,說明理由。

 

查看答案和解析>>

一、選擇題:

1.A             2.B           3.A           4.D             5.B

6.A             7.A           8.B           9.C             10.B

二、填空題:

11.{2,3}   12.   13.1+i   14.3   15.  16.24  17.  18.19.2  20.   21. 45   22.    23.2   24.

三、解答題:

25解:(1)原式展開得:

(2)

26解:(1)設(shè)事件為A,則在7次拋骰子中出現(xiàn)5次奇數(shù),2次偶數(shù)

而拋骰子出現(xiàn)的奇數(shù)和偶數(shù)的概率為P是相等的,且為

根據(jù)獨立重復(fù)試驗概率公式:  

(2)若

即前2次拋骰子中都是奇數(shù)或都是偶數(shù).

若前2次都是奇數(shù),則必須在后5次中拋出3次奇數(shù)2次偶數(shù),

其概率:

若前2次都是偶數(shù),則必須在后5次中拋出5次奇數(shù),其概率:

 

所求事件的概率

27解:(1)由題得

設(shè) 

兩式相減:

(2)

,即取時,.

所求的最小自然數(shù)是15

28解:(1)正方體ABCD中,∵A.N分別是AD.BC的中點,∴MN⊥AD

又∵PA⊥平面α,MNα,∴PA⊥MN,∴MN⊥平面PAD

又MN平面PAD,平面PMN⊥平面PAD

(2)由上可知:MN⊥平面PAD

∴PM⊥MN,QM⊥MN,∠PMQ是二面角P―MN―Q的平面角

PA=2,AD=2,則AM=1,PM=

PD=2,MQ=

29解:(1)拋物線的焦點是(),則雙曲線的

設(shè)雙曲線方程:

解得:

(2)聯(lián)立方程:

當(dāng)

由韋達(dá)定理:

設(shè)

代入可得:,檢驗合格

30解:(1),

(2)令,

在[-1,3]中,在此區(qū)間為增函數(shù)時,

在此區(qū)間為減函數(shù).

處取得極大值

*[,3]時在此區(qū)間為增函數(shù),在x=3處取得極大值.

比較(-)和的大小得:

(無理由最大,扣3分)

即存在k=2007

(3)

 

(也可由單調(diào)性:

 


同步練習(xí)冊答案