(3)證明:.濮陽縣一中2006年高考數(shù)學(xué)模擬卷(一) 查看更多

 

題目列表(包括答案和解析)

(08年龍巖一中模擬理)(14分)

已知函數(shù),

(1)證明:當(dāng)時(shí),上是增函數(shù);

(2)對于給定的閉區(qū)間,試說明存在實(shí)數(shù) ,當(dāng)時(shí),在閉區(qū)間上是減函數(shù);

(3)證明:

查看答案和解析>>

(08年泉州一中適應(yīng)性練習(xí)文)(14分)

設(shè)函數(shù)

(1)求函數(shù)的極值點(diǎn)

(2)當(dāng)時(shí),若對任意的,恒有,求的取值范圍

(3)證明:

查看答案和解析>>

(2012•安徽模擬)定義在(0,+∞)上的函數(shù)f(x)滿足對任意m>0,n∈R有f(mn)=nf(m),且當(dāng)0<x<1時(shí)f(x)<0
(1)求f(1);
(2)證明:當(dāng)x>1時(shí)f(x)>0;
(3)證明:函數(shù)f(x)在(0,+∞)上遞增.

查看答案和解析>>

(2012•德陽二模)已知函數(shù)f(x)=lnx,g(x)=k
x-1
x+1

(1)求函數(shù)F(x)=f(x)-g(x)的單調(diào)區(qū)間;
(2)當(dāng)x>1時(shí),函數(shù)f(x)>g(x)恒成立,求k的取值范圍;
(3)證明:2
n
i=1
1
2i+1
<ln(n+1),(n∈N
+).

查看答案和解析>>

已知函數(shù)f(x)=xlnx,g(x)=-
2
3
x3+
1
2
ax2-3bx+c(a,b,c∈R)

(1)若函數(shù)h(x)=f′(x)-g′(x)是其定義域上的增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若g(x)是奇函數(shù),且g(x)的極大值是g(
3
3
)
,求函數(shù)g(x)在區(qū)間[-1,m]上的最大值;
(3)證明:當(dāng)x>0時(shí),f′(x)>
1
ex
-
2
ex
+1

查看答案和解析>>

一、1. A  2.B  3.B  4.C  5.A  6.D  7.A  8.C  9.B  10.A  11.D  12.D

二、13.1   14.1   15.r≥6   16.81

三、

18. (1)設(shè) A為 “甲預(yù)報(bào)站預(yù)報(bào)準(zhǔn)確”B為“乙預(yù)報(bào)站預(yù)報(bào)準(zhǔn)確”則在同一時(shí)間段里至少      

  有一個(gè)預(yù)報(bào)準(zhǔn)確的概率為-------4分

(2)①的分布列為

0

1

2

3

p

0.008

0.096

0.384

0.512

②由上的值恒為正值得

---12分

19. 解法一

(1)證明:連AC交DB于點(diǎn)O,

由正四棱柱性質(zhì)可知AA1⊥底面ABCD,AC⊥BD,∴A1C⊥BD,

又∵A1B1⊥側(cè)面BC1且BC1⊥BE  ∴A1C⊥BE,

又∵BD∩BE=B,∴A1C⊥平面BDE.

(2)設(shè)A1C交平面BDE于點(diǎn)K,連結(jié)BK,則∠A1BK為A1B與平面BDE所成的角

在側(cè)面BC1中,BE⊥B1C∴ㄓBCE∽ㄓB1BC

      又BC=2,BB1=4,∴CE=1.

連OE,則OE為平面ACC1A1與平面BDE的交線,∴OE∩A1C=K

在RtㄓECO中,,∴

     ∵

,∴在RtㄓA1BK中,,即為A1B與平面BDE所成的角的正弦值.

解法二:

(1)       以D為原點(diǎn),DA、DC、DD1所在的直線分別為x,y,z軸建立空間直角坐標(biāo)系

D(0,0,0), A(2,0,0),B(2,2,0),C(0,2,0)

A1(2,0,4),B1(2,2,4),C1(0,2,4),D1(0,0,4),設(shè)點(diǎn)E(0,2,t)

∵BE⊥B1C,∴   ,∴E(0,2,1)

,,

∴A1C⊥DB,且A1C⊥BE,∴A1C⊥平面BDE.

(2)設(shè)A1C∩平面BDE=K

,…………①

同理有

…②

由①②聯(lián)立,解得    ∴

,又易知

,即所求角的正弦值為

20.解:(1)易得

(2)設(shè)P的圖像上任一點(diǎn),點(diǎn)P關(guān)于直線的對稱點(diǎn)為

∵點(diǎn)的圖像上,

,即得

(3)

                  下面求的最小值:

①當(dāng),即時(shí)

,得,所以

②當(dāng)時(shí)在R上是增函數(shù),無最小值,與不符.

③當(dāng)時(shí),在R上是減函數(shù),無最小值,與不符.

④當(dāng)時(shí),,與最小值不符.

綜上所述,所求的取值范圍是

21.(1)解:設(shè)P(a,0),Q(0,b)則:  ∴

設(shè)M(x,y)∵   ∴         ∴
(2)解法一:設(shè)A(a,b),,x1x2

則直線SR的方程為:,即4y = (x1+x2)xx1x2

∵A點(diǎn)在SR上,∴4b=(x1+x2)ax1x2  ①  對求導(dǎo)得:y′=x

∴拋物線上S.R處的切線方程為

即4    ②

即4  ③

聯(lián)立②、③得  

代入①得:ax-2y-2b=0故:B點(diǎn)在直線ax-2y-2b=0上.

解法二:設(shè)A(a,b),當(dāng)過點(diǎn)A的直線斜率不存在時(shí)l與拋物線有且僅有一個(gè)公共點(diǎn),與題意不符,可設(shè)直線SR的方程為yb=k(xa).

聯(lián)立消去y,得x2-4kx+4ak-4b=0.設(shè),x1x2

則由韋達(dá)定理,得

又過S、R點(diǎn)的切線方程分別為,. 

聯(lián)立,并解之,得k為參數(shù))   消去k,得ax-2y-2b=0.

故B點(diǎn)在直線2axyb=0上.

22.解:(1)=22;

(3)由(2)知

=

 


同步練習(xí)冊答案