由解得.所以當(dāng)時(shí).函數(shù)的最小值是, --11分 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)的最小值為0,其中

(Ⅰ)求的值;

(Ⅱ)若對(duì)任意的成立,求實(shí)數(shù)的最小值;

(Ⅲ)證明).

【解析】(1)解: 的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118530600520067_ST.files/image010.png">

,得

當(dāng)x變化時(shí),,的變化情況如下表:

x

-

0

+

極小值

因此,處取得最小值,故由題意,所以

(2)解:當(dāng)時(shí),取,有,故時(shí)不合題意.當(dāng)時(shí),令,即

,得

①當(dāng)時(shí),,上恒成立。因此上單調(diào)遞減.從而對(duì)于任意的,總有,即上恒成立,故符合題意.

②當(dāng)時(shí),,對(duì)于,故上單調(diào)遞增.因此當(dāng)取時(shí),,即不成立.

不合題意.

綜上,k的最小值為.

(3)證明:當(dāng)n=1時(shí),不等式左邊==右邊,所以不等式成立.

當(dāng)時(shí),

                      

                      

在(2)中取,得 ,

從而

所以有

     

     

     

     

      

綜上,

 

查看答案和解析>>

已知函數(shù)f(x)=ex-ax,其中a>0.

(1)若對(duì)一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

當(dāng)時(shí)單調(diào)遞減;當(dāng)時(shí)單調(diào)遞增,故當(dāng)時(shí),取最小值

于是對(duì)一切恒成立,當(dāng)且僅當(dāng).        ①

當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.

故當(dāng)時(shí),取最大值.因此,當(dāng)且僅當(dāng)時(shí),①式成立.

綜上所述,的取值集合為.

(Ⅱ)由題意知,

,則.當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.故當(dāng)

從而,

所以因?yàn)楹瘮?shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

【點(diǎn)評(píng)】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問(wèn)題等,考查運(yùn)算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問(wèn)利用導(dǎo)函數(shù)法求出取最小值對(duì)一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問(wèn)在假設(shè)存在的情況下進(jìn)行推理,然后把問(wèn)題歸結(jié)為一個(gè)方程是否存在解的問(wèn)題,通過(guò)構(gòu)造函數(shù),研究這個(gè)函數(shù)的性質(zhì)進(jìn)行分析判斷.

 

查看答案和解析>>

已知函數(shù),其中.

  (1)若處取得極值,求曲線在點(diǎn)處的切線方程;

  (2)討論函數(shù)的單調(diào)性;

  (3)若函數(shù)上的最小值為2,求的取值范圍.

【解析】第一問(wèn),處取得極值

所以,,解得,此時(shí),可得求曲線在點(diǎn)

處的切線方程為:

第二問(wèn)中,易得的分母大于零,

①當(dāng)時(shí), ,函數(shù)上單調(diào)遞增;

②當(dāng)時(shí),由可得,由解得

第三問(wèn),當(dāng)時(shí)由(2)可知,上處取得最小值,

當(dāng)時(shí)由(2)可知處取得最小值,不符合題意.

綜上,函數(shù)上的最小值為2時(shí),求的取值范圍是

 

查看答案和解析>>

已知函數(shù)

(1)求函數(shù)的定義域;

(2)求函數(shù)在區(qū)間上的最小值;

(3)已知,命題p:關(guān)于x的不等式對(duì)函數(shù)的定義域上的任意恒成立;命題q:指數(shù)函數(shù)是增函數(shù).若“p或q”為真,“p且q”為假,求實(shí)數(shù)m的取值范圍.

【解析】第一問(wèn)中,利用由 即

第二問(wèn)中,,得:

第三問(wèn)中,由在函數(shù)的定義域上 的任意,,當(dāng)且僅當(dāng)時(shí)等號(hào)成立。當(dāng)命題p為真時(shí),;而命題q為真時(shí):指數(shù)函數(shù).因?yàn)椤皃或q”為真,“p且q”為假,所以

當(dāng)命題p為真,命題q為假時(shí);當(dāng)命題p為假,命題q為真時(shí)分為兩種情況討論即可 。

解:(1)由 即

(2),得:

(3)由在函數(shù)的定義域上 的任意,,當(dāng)且僅當(dāng)時(shí)等號(hào)成立。當(dāng)命題p為真時(shí),;而命題q為真時(shí):指數(shù)函數(shù).因?yàn)椤皃或q”為真,“p且q”為假,所以

當(dāng)命題p為真,命題q為假時(shí),

當(dāng)命題p為假,命題q為真時(shí),,

所以

 

查看答案和解析>>

甲乙兩公司生產(chǎn)同一種新產(chǎn)品,經(jīng)測(cè)算,對(duì)于函數(shù),,及任意的,當(dāng)甲公司投入萬(wàn)元作宣傳時(shí),乙公司投入的宣傳費(fèi)若小于萬(wàn)元,則乙公司有失敗的危險(xiǎn),否則無(wú)失敗的危險(xiǎn);當(dāng)乙公司投入萬(wàn)元作宣傳時(shí),甲公司投入的宣傳費(fèi)若小于萬(wàn)元,則甲公司有失敗的危險(xiǎn),否則無(wú)失敗的危險(xiǎn). 設(shè)甲公司投入宣傳費(fèi)x萬(wàn)元,乙公司投入宣傳費(fèi)y萬(wàn)元,建立如圖直角坐標(biāo)系,試回答以下問(wèn)題:

(1)請(qǐng)解釋;w.w.w.k.s.5.u.c.o.m

(2)甲、乙兩公司在均無(wú)失敗危險(xiǎn)的情況下盡可能少地投入宣傳費(fèi)用,問(wèn)此時(shí)各應(yīng)投入多少宣傳費(fèi)?

(3)若甲、乙分別在上述策略下,為確保無(wú)失敗的危險(xiǎn),根據(jù)對(duì)方所投入的宣傳費(fèi),按最少投入費(fèi)用原則,投入自己的宣傳費(fèi):若甲先投入萬(wàn)元,乙在上述策略下,投入最少費(fèi)用;而甲根據(jù)乙的情況,調(diào)整宣傳費(fèi)為;同樣,乙再根據(jù)甲的情況,調(diào)整宣傳費(fèi)為如此得當(dāng)甲調(diào)整宣傳費(fèi)為時(shí),乙調(diào)整宣傳費(fèi)為;試問(wèn)是否存在,的值,若存在寫(xiě)出此極限值(不必證明),若不存在,說(shuō)明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案