21.已知0<x<.t是大于零的常數(shù).且函數(shù)的最小值為9.則t的值為 . 查看更多

 

題目列表(包括答案和解析)

已知0<x<且t是大于0的常數(shù),f(x)=的最小值是9,則t=(    )

A.3                 B.               C.4                 D.

查看答案和解析>>

已知0<x<
π
2
,且t是大于0的常數(shù),f(x)=
1
sinx
+
t
1-sinx
的最小值為9,則t=
 

查看答案和解析>>

已知函數(shù)f(x)=
ax+b
x2+1
是(-1,1)上的奇函數(shù),且f(
1
2
)=5

(1)求實數(shù)a,b的值;
(2)判斷并證明函數(shù)f(x)在(-1,1)上單調(diào)性;
(3)解關(guān)于t的不等式f(t-1)+f(t)<0.

查看答案和解析>>

已知函數(shù)f(x)=
mx+n
1+x2
是定義在(-1,1)上的奇函數(shù),且f(
1
2
)=
2
5

(1)求實數(shù)m,n的值
(2)用定義證明f(x)在(-1,1)上是增函數(shù)
(3)解關(guān)于t的不等式f(t-1)+f(t)<0.

查看答案和解析>>

已知集合A={x|x2+2x+t<0},B={x|
3x-1
≥1}
,全集U=R.
(Ⅰ)若t=-8,求A∪(CUB);
(Ⅱ)若A∩B≠∅,求實數(shù)t的取值范圍.

查看答案和解析>>

一、選擇題:

1.A 2.B 3.C 4.C 5.D 6.A 7.D 8.C 9.D 10.D 11.A 12.B

二、填空題:

13.14   14.2   15.30   16.①③

17. -1    18. -5   19.  -1-    20.     

21. 4    22.6ec8aac122bd4f6e    23.10   24.412    25.①④

三、解答題:

26解:(1)

,有,

解得。                                      

(2)解法一:    

。 

解法二:由(1),,得

   

                                       

于是,

              

代入得。          

27證明:(1)∵

                                        

(2)令中點為,中點為,連結(jié)、

的中位線

         

又∵

   

為正

        

又∵

∴四邊形為平行四邊形   

 

28解:(1)設(shè)米,,則

                                               

                                       

                                           

(2)                 

 

 

 此時                                            

(3)∵

                         

時,

上遞增                    

此時                                             

答:(1)

(2)當的長度是4米時,矩形的面積最小,最小面積為24平方米;

(3)當的長度是6米時,矩形的面積最小,最小面積為27平方米。                            

29解:(1)①若直線的斜率不存在,即直線是,符合題意。 

②若直線斜率存在,設(shè)直線,即。

由題意知,圓心以已知直線的距離等于半徑2,即:

解之得                                           

所求直線方程是,                          

(2)解法一:直線與圓相交,斜率必定存在,且不為0,可設(shè)直線方程為

                  

又直線垂直,由

為定值。

是定值,且為6。                          

30解:(1)由題意得,                            

,    ∴   

,∴

單調(diào)增函數(shù),                                         

對于恒成立。    

(3)       方程;  

(4)       ∴ 

 ∵,∴方程為               

 令,,

 ∵,當時,

上為增函數(shù);

 時,, 

上為減函數(shù),  

 當時,                    

,            

∴函數(shù)、在同一坐標系的大致圖象如圖所示,

∴①當,即時,方程無解。

②當,即時,方程有一個根。

③當,即時,方程有兩個根                                                                                                     

 


同步練習(xí)冊答案