解法二:如圖過點S作直線∥AD 查看更多

 

題目列表(包括答案和解析)

(2010•盧灣區(qū)二模)數(shù)學(xué)課上,張老師出示了問題1:如圖1,四邊形ABCD是正方形,BC=1,對角線交點記作O,點E是邊BC延長線上一點.連接OE交CD邊于F,設(shè)CE=x,CF=y,求y關(guān)于x的函數(shù)解析式及其定義域.
(1)經(jīng)過思考,小明認(rèn)為可以通過添加輔助線--過點O作OM⊥BC,垂足為M求解.你認(rèn)為這個想法可行嗎?請寫出問題1的答案及相應(yīng)的推導(dǎo)過程;
(2)如果將問題1中的條件“四邊形ABCD是正方形,BC=1”改為“四邊形ABCD是平行四邊形,BC=3,CD=2,”其余條件不變(如圖2),請直接寫出條件改變后的函數(shù)解析式;
(3)如果將問題1中的條件“四邊形ABCD是正方形,BC=1”進(jìn)一步改為:“四邊形ABCD是梯形,AD∥BC,BC=a,CD=b,AD=c(其中a,b,c為常量)”其余條件不變(如圖3),請你寫出條件再次改變后y關(guān)于x的函數(shù)解析式以及相應(yīng)的推導(dǎo)過程.

查看答案和解析>>

解:(1)點C的坐標(biāo)為.

∵ 點A、B的坐標(biāo)分別為

            ∴ 可設(shè)過A、BC三點的拋物線的解析式為.   

            將代入拋物線的解析式,得.

            ∴ 過A、B、C三點的拋物線的解析式為.

(2)可得拋物線的對稱軸為,頂點D的坐標(biāo)為   

,設(shè)拋物線的對稱軸與x軸的交點為G.

直線BC的解析式為.

設(shè)點P的坐標(biāo)為.

解法一:如圖8,作OPAD交直線BC于點P

連結(jié)AP,作PMx軸于點M.

OPAD

∴ ∠POM=∠GAD,tan∠POM=tan∠GAD.

  ∴ ,即.

  解得.  經(jīng)檢驗是原方程的解.

  此時點P的坐標(biāo)為.

但此時,OMGA.

  ∵

      ∴ OPAD,即四邊形的對邊OPAD平行但不相等,

      ∴ 直線BC上不存在符合條件的點P. - - - - - - - - - - - - - - - - - - - - - 6分

            解法二:如圖9,取OA的中點E,作點D關(guān)于點E的對稱點P,作PNx軸于

N. 則∠PEO=∠DEAPE=DE.

可得△PEN≌△DEG

,可得E點的坐標(biāo)為.

NE=EG=, ON=OE-NE=NP=DG=.

∴ 點P的坐標(biāo)為.∵ x=時,

∴ 點P不在直線BC上.

                   ∴ 直線BC上不存在符合條件的點P .

 


(3)的取值范圍是.

查看答案和解析>>

小明和同桌小聰在課后做作業(yè)時,對課本中的一道作業(yè)題,進(jìn)行了認(rèn)真探索.

【作業(yè)題】如圖1,一個半徑為100m的圓形人工湖如圖所示,弦AB是湖上的一座橋,測得圓周角∠C=45°,求橋AB的長.

小明和小聰經(jīng)過交流,得到了如下的兩種解決方法:

方法一:延長BO交⊙O與點E,連接AE,得 Rt△ABE,∠E=∠C,∴AB=;

方法二:作AB的弦心距OH,連接OB, ∴∠BOH=∠C,解Rt△OHB, ∴HB=,∴AB=

感悟:圓內(nèi)接三角形的一邊和這邊的對銳角、圓的半徑(或直徑)這三者關(guān)系,可構(gòu)成直角三角形,從而把一邊和這邊的對銳角﹑半徑建立一個關(guān)系式.

(1)問題解決:受到(1)的啟發(fā),請你解下面命題:如圖2,點A(3,0)、B(0,),C為直線AB上一點,過A、O、C的⊙E的半徑為2.求線段OC的長.

(2)問題拓展:如圖3,△ABC中,∠ ACB=75°,∠ABC=45°,AB=,D是線段BC上的一個動點,以AD為直徑畫⊙O分別交AB,AC于E,F(xiàn),連結(jié)EF, 設(shè)⊙O半徑為x, EF為y.①y關(guān)于x的函數(shù)關(guān)系式;②求線段EF長度的最小值.

 

 

查看答案和解析>>

小明和同桌小聰在課后做作業(yè)時,對課本中的一道作業(yè)題,進(jìn)行了認(rèn)真探索.
【作業(yè)題】如圖1,一個半徑為100m的圓形人工湖如圖所示,弦AB是湖上的一座橋,測得圓周角∠C=45°,求橋AB的長.

小明和小聰經(jīng)過交流,得到了如下的兩種解決方法:
方法一:延長BO交⊙O與點E,連接AE,得 Rt△ABE,∠E=∠C,∴AB=;
方法二:作AB的弦心距OH,連接OB, ∴∠BOH=∠C,解Rt△OHB, ∴HB=,∴AB=
感悟:圓內(nèi)接三角形的一邊和這邊的對銳角、圓的半徑(或直徑)這三者關(guān)系,可構(gòu)成直角三角形,從而把一邊和這邊的對銳角﹑半徑建立一個關(guān)系式.
(1)問題解決:受到(1)的啟發(fā),請你解下面命題:如圖2,點A(3,0)、B(0,),C為直線AB上一點,過A、O、C的⊙E的半徑為2.求線段OC的長.

(2)問題拓展:如圖3,△ABC中,∠ ACB=75°,∠ABC=45°,AB=,D是線段BC上的一個動點,以AD為直徑畫⊙O分別交AB,AC于E,F(xiàn),連結(jié)EF, 設(shè)⊙O半徑為x, EF為y.①y關(guān)于x的函數(shù)關(guān)系式;②求線段EF長度的最小值.

查看答案和解析>>

小明和同桌小聰在課后做作業(yè)時,對課本中的一道作業(yè)題,進(jìn)行了認(rèn)真探索。

【作業(yè)題】如圖1,一個半徑為100m的圓形人工湖如圖所示,弦AB是湖上的一座橋,測得圓周角∠C=45°,求橋AB的長。

小明和小聰經(jīng)過交流,得到了如下的兩種解決方法:

方法一:延長BO交⊙O與點E,連接AE,得 Rt△ABE,∠E=∠C,∴AB=100;

方法二:作AB的弦心距OH,連接OB, ∴∠BOH=∠C,解Rt△OHB, ∴HB=50,

∴AB=100。

感悟:圓內(nèi)接三角形的一邊和這邊的對銳角、圓的半徑(或直徑)這三者關(guān)系,

可構(gòu)成直角三角形,從而把一邊和這邊的對銳角﹑半徑建立一個關(guān)系式。

(1)問題解決:受到(1)的啟發(fā),請你解下面命題:如圖2,點A(3,0)、B(0,),C為直線AB上一點,過A、O、C的⊙E的半徑為2. 求線段OC的長。

(2)問題拓展:如圖3,△ABC中,∠ ACB=75°,∠ABC=45°,AB=2,D是線段BC上的一個動點,以AD為直徑畫⊙O分別交AB,AC于E,F(xiàn),連結(jié)EF, 設(shè)⊙O半徑為x, EF為y.

①     y關(guān)于x的函數(shù)關(guān)系式;②求線段EF長度的最小值。

查看答案和解析>>


同步練習(xí)冊答案