13.給出問題:已知中.滿足.試判定的形狀.某學(xué)生的解答如下:由條件可得.去分母整理可得..故是直角三角形.該學(xué)生的解答是否正確?若正確.請將他的解題主要依據(jù)填在下面橫線上,若不正確.將正確的結(jié)果填在下面橫線上. . 查看更多

 

題目列表(包括答案和解析)

給出問題:已知滿足,試判定的形狀.某學(xué)生的解答如下:

解:(i)由余弦定理可得,

,

,

,

是直角三角形.

(ii)設(shè)外接圓半徑為.由正弦定理可得,原式等價于

,

是等腰三角形.

綜上可知,是等腰直角三角形.

請問:該學(xué)生的解答是否正確?若正確,請在下面橫線中寫出解題過程中主要用到的思想方法;若不正確,請在下面橫線中寫出你認為本題正確的結(jié)果.           .

 

查看答案和解析>>

給出問題:已知△ABC滿足a•cosA=b•cosB,試判斷△ABC的形狀,某學(xué)生的解答如下:
(i)a•?a2(b2+c2-a2)=b2(a2+c2-b2)?(a2-b2)•c2=(a2-b2)(a2+b2)?c2=a2+b2
故△ABC是直角三角形.
(ii)設(shè)△ABC外接圓半徑為R,由正弦定理可得,原式等價于2RsinAcosA=2RsinBcosB?sin2A=cos2B?A=B
故△ABC是等腰三角形.
綜上可知,△ABC是等腰直角三角形.
請問:該學(xué)生的解答是否正確?若正確,請在下面橫線中寫出解題過程中主要用到的思想方法;若不正確,請在下面橫線中寫出你認為本題正確的結(jié)果   

查看答案和解析>>

給出問題:已知△ABC滿足a•cosA=b•cosB,試判斷△ABC的形狀,某學(xué)生的解答如下:
(i)a•?a2(b2+c2-a2)=b2(a2+c2-b2)?(a2-b2)•c2=(a2-b2)(a2+b2)?c2=a2+b2
故△ABC是直角三角形.
(ii)設(shè)△ABC外接圓半徑為R,由正弦定理可得,原式等價于2RsinAcosA=2RsinBcosB?sin2A=cos2B?A=B
故△ABC是等腰三角形.
綜上可知,△ABC是等腰直角三角形.
請問:該學(xué)生的解答是否正確?若正確,請在下面橫線中寫出解題過程中主要用到的思想方法;若不正確,請在下面橫線中寫出你認為本題正確的結(jié)果   

查看答案和解析>>

給出問題:已知滿足,試判定的形狀.某學(xué)生的解答如下:
解:(i)由余弦定理可得,
,

,
是直角三角形.
(ii)設(shè)外接圓半徑為.由正弦定理可得,原式等價于
,
是等腰三角形.
綜上可知,是等腰直角三角形.
請問:該學(xué)生的解答是否正確?若正確,請在下面橫線中寫出解題過程中主要用到的思想方法;若不正確,請在下面橫線中寫出你認為本題正確的結(jié)果.          .

查看答案和解析>>

給出問題:已知△ABC滿足a•cosA=b•cosB,試判斷△ABC的形狀,某學(xué)生的解答如下:
(i)a•數(shù)學(xué)公式?a2(b2+c2-a2)=b2(a2+c2-b2)?(a2-b2)•c2=(a2-b2)(a2+b2)?c2=a2+b2
故△ABC是直角三角形.
(ii)設(shè)△ABC外接圓半徑為R,由正弦定理可得,原式等價于2RsinAcosA=2RsinBcosB?sin2A=cos2B?A=B
故△ABC是等腰三角形.
綜上可知,△ABC是等腰直角三角形.
請問:該學(xué)生的解答是否正確?若正確,請在下面橫線中寫出解題過程中主要用到的思想方法;若不正確,請在下面橫線中寫出你認為本題正確的結(jié)果________.

查看答案和解析>>


同步練習冊答案