題目列表(包括答案和解析)
(1)設(shè)x、y、z1∈R,且x+y+z=1,求證x2+y2+z2≥;
(2)設(shè)二次函數(shù)f(x)=ax2+bx+c(a>0),方程f (x)-x=0有兩個實根x1,x2,且滿足:0<x1<x2<,若x∈(0,x1).
求證:x<f(x)<x1
已知z∈C且|z|=1,設(shè)u=(3+4i)z+(3-4i).
(1)證明u∈R;
(2)求u的最大值和最小值.
已知冪函數(shù)f(x)=x-m2+2m+3(m∈Z)為偶函數(shù),且在區(qū)間(0,+∞)上是單調(diào)增函數(shù).
(1)求函數(shù)f(x)的解析式;
(2)設(shè)函數(shù)g(x)=+2x+c,若g(x)>2對任意的x∈R恒成立,求實數(shù)c的取值范圍.
若實數(shù)m,n為關(guān)于x的一元二次方程Ax2+Bx+C=0的兩個實數(shù)根,則有Ax2+Bx+C=A(x-m)(x-n),由系數(shù)可得:m+n=-,且m·n=.設(shè)x1,x2,x3為關(guān)于x的方程f(x)=x3-ax2+bx-c=0,(a,b,c∈R)的三個實數(shù)根.
(1)寫出三次方程的根與系數(shù)的關(guān)系;即x1+x2+x3=_________;x1x2+x2x3+x3x1=_________;x1·x2·x3=_________
(2)若a,b,c均大于零,試證明:x1,x2,x3都大于零
(3)若a∈Z,b∈Z,|b|<2,f(x)在x=α,x=β處取得極值,且-1<α<β<1,求方程f(x)=0三個實根兩兩不相等時,實數(shù)c的取值范圍.
設(shè)函數(shù)f(x)=ax2+bx+c其中a∈N+,b∈N,c∈Z.
(1)若b>2a,且函數(shù)f(sinx)(x∈R)的最大值為2,最小值為-4,求f(x)的解析式;
(2)在(1)的條件下設(shè)函數(shù)g(x)=-f(x)+7x-2在[m,n]上的值域是[-5,4],試求m2+n2的取值范圍.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com