22.已知函數(shù)=+有如下性質(zhì):如果常數(shù)>0.那么該函數(shù)在0.上是減函數(shù).在.+∞上是增函數(shù). (1)如果函數(shù)=+(>0)的值域為6.+∞.求的值, (2)研究函數(shù)=+(常數(shù)>0)在定義域內(nèi)的單調(diào)性.并說明理由, (3)對函數(shù)=+和=+(常數(shù)>0)作出推廣.使它們都是你所推廣的函數(shù)的特例.研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論.不必證明).并求函數(shù)=+(是正整數(shù))在區(qū)間[.2]上的最大值和最小值. 解:(1)易知.時.. (2)=+是偶函數(shù).易知.該函數(shù)在上是減函數(shù).在上是增函數(shù),則該函數(shù)在上是減函數(shù).在上是增函數(shù). (3)推廣:函數(shù).當(dāng)為奇數(shù)時..是減函數(shù),.是增函數(shù)..是增函數(shù),.是減函數(shù). 當(dāng)為偶數(shù)時..是減函數(shù),.是增函數(shù). .是減函數(shù),.是增函數(shù). =+ 當(dāng)時.. ∴.是減函數(shù),.是增函數(shù). ∵ ∴函數(shù)=+在區(qū)間[.2]上的最大值為.最小值為. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)有如下性質(zhì):如果常數(shù)>0,那么該函數(shù)在0,上是減函數(shù),在,+∞上是增函數(shù).

(Ⅰ)如果函數(shù)>0)的值域為6,+∞,求的值;

(Ⅱ)研究函數(shù)(常數(shù)>0)在定義域內(nèi)的單調(diào)性,并說明理由;

(Ⅲ)對函數(shù)(常數(shù)>0)作出推廣,使它們都是你所推廣的函數(shù)的特例.研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明),并求函數(shù)是正整數(shù))在區(qū)間[,2]上的最大值和最小值(可利用你的研究結(jié)論).

 

查看答案和解析>>

已知函數(shù)有如下性質(zhì):如果常數(shù)>0,那么該函數(shù)在0,上是減函數(shù),在,+∞上是增函數(shù).
(Ⅰ)如果函數(shù)>0)的值域為6,+∞,求的值;
(Ⅱ)研究函數(shù)(常數(shù)>0)在定義域內(nèi)的單調(diào)性,并說明理由;
(Ⅲ)對函數(shù)(常數(shù)>0)作出推廣,使它們都是你所推廣的函數(shù)的特例.研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明),并求函數(shù)是正整數(shù))在區(qū)間[,2]上的最大值和最小值(可利用你的研究結(jié)論).

查看答案和解析>>

已知函數(shù)y=x+有如下性質(zhì):如果常數(shù)a>0,那么該函數(shù)在(0,]上是減函數(shù),在[,+∞)上是增函數(shù).

(1)如果函數(shù)y=x+(x>0)的值域為[6,+∞),求b的值;

(2)研究函數(shù)y=x2(常數(shù)c>0)在定義域內(nèi)的單調(diào)性,并說明理由;

(3)對函數(shù)y=x+和y=x2(常數(shù)a>0)作出推廣,使它們都是你所推廣的函數(shù)的特例.研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明),

查看答案和解析>>

已知函數(shù)y=x+有如下性質(zhì):如果常數(shù)a>0,那么該函數(shù)在(0,]上為減函數(shù),在[,+∞)上是增函數(shù).

(1)如果函數(shù)y=x+在(0,4]上是減函數(shù).在[4,+∞)上是增函數(shù),求實常數(shù)b的值;

(2)設(shè)常數(shù)c∈[1,4],求函數(shù)f(x)=x+,x∈[1,2]的最大值和最小值;

(3)當(dāng)n是正整數(shù)時,研究函數(shù)y(x)=xn(c>0)的單調(diào)性,并說明理由.

查看答案和解析>>

已知函數(shù)y=x+有如下性質(zhì):如果常數(shù)a>0,那么該函數(shù)在(0,]上是減函數(shù),在[,+∞)上是增函數(shù).

(1)如果函數(shù)y=x+(x>0)在(0,4]上是減函數(shù),在[4,+∞)上是增函數(shù),求b的值.

(2)設(shè)常數(shù)c∈[1,4],求函數(shù)f(x)=x+(1≤x≤2)的最大值和最小值;

查看答案和解析>>


同步練習(xí)冊答案