22. 已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn-Sn-2=3求數(shù)列{an}的通項(xiàng)公式. 2005年普通高等學(xué)校招生全國統(tǒng)一考試 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

已知數(shù)列{an}和{bn}滿足:a1=λan+1=其中λ為實(shí)數(shù),n為正整數(shù)。

(Ⅰ)對(duì)任意實(shí)數(shù)λ,證明數(shù)列{an}不是等比數(shù)列;

(Ⅱ)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論;

(Ⅲ)設(shè)0<ab,Sn為數(shù)列{bn}的前n項(xiàng)和。是否存在實(shí)數(shù)λ,使得對(duì)任意正整數(shù)n,都有

aSnb?若存在,求λ的取值范圍;若不存在,說明理由。

查看答案和解析>>

(本小題滿分14分)

已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=其中λ為實(shí)數(shù),n為正整數(shù)。

(Ⅰ)對(duì)任意實(shí)數(shù)λ,證明數(shù)列{an}不是等比數(shù)列;

(Ⅱ)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論;

(Ⅲ)設(shè)0<abSn為數(shù)列{bn}的前n項(xiàng)和。是否存在實(shí)數(shù)λ,使得對(duì)任意正整數(shù)n,都有

aSnb?若存在,求λ的取值范圍;若不存在,說明理由。

查看答案和解析>>

(本小題滿分14分)
已知數(shù)列{an}和{bn}滿足:a1=λan+1=其中λ為實(shí)數(shù),n為正整數(shù)。
(Ⅰ)對(duì)任意實(shí)數(shù)λ,證明數(shù)列{an}不是等比數(shù)列;
(Ⅱ)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論;
(Ⅲ)設(shè)0<ab,Sn為數(shù)列{bn}的前n項(xiàng)和。是否存在實(shí)數(shù)λ,使得對(duì)任意正整數(shù)n,都有
aSnb?若存在,求λ的取值范圍;若不存在,說明理由。

查看答案和解析>>

(本小題滿分14分)

已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=其中λ為實(shí)數(shù),n為正整數(shù)。

(Ⅰ)對(duì)任意實(shí)數(shù)λ,證明數(shù)列{an}不是等比數(shù)列;

(Ⅱ)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論;

(Ⅲ)設(shè)0<ab,Sn為數(shù)列{bn}的前n項(xiàng)和。是否存在實(shí)數(shù)λ,使得對(duì)任意正整數(shù)n,都有

aSnb?若存在,求λ的取值范圍;若不存在,說明理由。

 

查看答案和解析>>

(本小題滿分14分)
設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=1,且an+2SnSn-1=0(n≥2),
(1)求數(shù)列{Sn}的通項(xiàng)公式;
(2)設(shè)Sn,bn=f()+1.記Pn=S1S2+S2S3+…+SnSn+1,Tn=b1b2+b2b3+…+bnbn+1,試求Tn,并證明Pn<.

查看答案和解析>>


同步練習(xí)冊(cè)答案