已知為拋物線上任意一點, 直線l為過點A的切線, 設(shè)直線l交y軸于點B. Pl, 且. (1) 當(dāng)A點運動時, 求點P的軌跡方程; (2) 求點到動直線l的最短距離, 并求此時l的方程. 查看更多

 

題目列表(包括答案和解析)

((本題滿分14分)已知拋物線y=x2+1,定點A(3,1)、B為拋物線上任意一點,點P在線段AB上,且有BP∶PA=1∶2,當(dāng)B點在拋物線上變動時,求點P的軌跡方程.

查看答案和解析>>

(本小題滿分14分)
已知拋物線的焦點為上異于原點的任意一點,過點的直線于另一點,交軸的正半軸于點,且有.當(dāng)點的橫坐標(biāo)為時,為正三角形.
(Ⅰ)求的方程;
(Ⅱ)若直線,且有且只有一個公共點,
(ⅰ)證明直線過定點,并求出定點坐標(biāo);
(ⅱ)的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由.

查看答案和解析>>

(本小題滿分14分)
已知拋物線的焦點為,上異于原點的任意一點,過點的直線于另一點,交軸的正半軸于點,且有.當(dāng)點的橫坐標(biāo)為時,為正三角形.
(Ⅰ)求的方程;
(Ⅱ)若直線,且有且只有一個公共點,
(ⅰ)證明直線過定點,并求出定點坐標(biāo);
(ⅱ)的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由.

查看答案和解析>>

(08年山東卷理)(本小題滿分14分)

如圖,設(shè)拋物線方程為x2=2py(p>0),M為 直線y=-2p上任意一點,過M引拋物線的切線,切點分別為A,B.

(Ⅰ)求證:A,M,B三點的橫坐標(biāo)成等差數(shù)列;

(Ⅱ)已知當(dāng)M點的坐標(biāo)為(2,-2p)時,,求此時拋物線的方程;

(Ⅲ)是否存在點M,使得點C關(guān)于直線AB的對稱點D在拋物線上,其中,點C滿足O為坐標(biāo)原點).若存在,求出所有適合題意的點M的坐標(biāo);若不存在,請說明理由.

 

查看答案和解析>>

(本小題滿分14分)

已知拋物線和直線沒有公共點(其中、為常數(shù)),動點是直線上的任意一點,過點引拋物線的兩條切線,切點分別為,且直線恒過點.

   (1)求拋物線的方程;

   (2)已知點為原點,連結(jié)交拋物線兩點,

證明:.

 

查看答案和解析>>


同步練習(xí)冊答案