數(shù)列{an}中.a1=1,n≥2時.其前n項(xiàng)的和Sn滿足Sn2=an(Sn-) (Ⅰ)求Sn的表達(dá)式. (Ⅱ)設(shè)bn=,數(shù)列{bn}的前n項(xiàng)和為Tn.求. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)
古代印度婆羅門教寺廟內(nèi)的僧侶們曾經(jīng)玩過一種被稱為“河內(nèi)寶塔問題”的游戲,其玩法如下:如圖,設(shè)有n)個圓盤依其半徑大小,大的在下,小的在上套在A柱上,現(xiàn)要將套在A柱上的盤換到C柱上,要求每次只能搬動一個,而且任何時候不允許將大盤套在小盤上面,假定有三根柱子A、B、C可供使用.

現(xiàn)用an表示將n個圓盤全部從A柱上移到C柱上所至少需要移動的次數(shù),回答下列問題:
(1)   寫出a1,a2,a3,并求出an;
(2)   記,求和);
(其中表示所有的積的和)
(3)   證明:

查看答案和解析>>

(本小題滿分12分)已知函數(shù)f(x)=x3x2-2.

(1)設(shè){an}是正數(shù)組成的數(shù)列,前n項(xiàng)和為Sn,其中a1=3.若點(diǎn)(an,an+12-2an+1)(n∈N*)在函數(shù)yf′(x)的圖象上,求證:點(diǎn)(n,Sn)也在yf′(x)的圖象上;

(2)求函數(shù)f(x)在區(qū)間(a-1,a)內(nèi)的極值.

 

 

查看答案和解析>>

1.    (本小題滿分12分)

古代印度婆羅門教寺廟內(nèi)的僧侶們曾經(jīng)玩過一種被稱為“河內(nèi)寶塔問題”的游戲,其玩法如下:如圖,設(shè)有n)個圓盤依其半徑大小,大的在下,小的在上套在A柱上,現(xiàn)要將套在A柱上的盤換到C柱上,要求每次只能搬動一個,而且任何時候不允許將大盤套在小盤上面,假定有三根柱子A、B、C可供使用.

現(xiàn)用an表示將n個圓盤全部從A柱上移到C柱上所至少需要移動的次數(shù),回答下列問題:

(1)    寫出a1,a2a3,并求出an;

(2)    記,求和);

(其中表示所有的積的和)

(3)    證明:

 

查看答案和解析>>

(本小題滿分12分)已知函數(shù)f(x)=x3x2-2.
(1)設(shè){an}是正數(shù)組成的數(shù)列,前n項(xiàng)和為Sn,其中a1=3.若點(diǎn)(an,an+12-2an+1)(n∈N*)在函數(shù)yf′(x)的圖象上,求證:點(diǎn)(n,Sn)也在yf′(x)的圖象上;
(2)求函數(shù)f(x)在區(qū)間(a-1,a)內(nèi)的極值.

查看答案和解析>>

(本小題滿分12分)
古代印度婆羅門教寺廟內(nèi)的僧侶們曾經(jīng)玩過一種被稱為“河內(nèi)寶塔問題”的游戲,其玩法如下:如圖,設(shè)有n)個圓盤依其半徑大小,大的在下,小的在上套在A柱上,現(xiàn)要將套在A柱上的盤換到C柱上,要求每次只能搬動一個,而且任何時候不允許將大盤套在小盤上面,假定有三根柱子A、B、C可供使用.

現(xiàn)用an表示將n個圓盤全部從A柱上移到C柱上所至少需要移動的次數(shù),回答下列問題:
(1)   寫出a1,a2,a3,并求出an;
(2)   記,求和);
(其中表示所有的積的和)
(3)   證明:

查看答案和解析>>


同步練習(xí)冊答案