5.已知橢圓和拋物線的離 心率分別為e1.e2.e3.則 ( ) A.e1e2> e3 B.e1e2= e3 C.e1e2< e3 D.e1e2≥e3 查看更多

 

題目列表(包括答案和解析)

已知橢圓和拋物線的離心率分別為e1、e2、e3,則        

     Ae1e2> e3         Be1e2= e3         Ce1e2< e3         De1e2e3

 

查看答案和解析>>

已知橢圓和拋物線的離心率分別為e1、e2、e3,則        

     Ae1e2> e3         Be1e2= e3         Ce1e2< e3         De1e2e3

 

查看答案和解析>>

已知橢圓和拋物線y2=2px(p>0)的離心率分別為e1、e2、e3,則

[  ]

A.e1e2>e3  B.e1e2=e3  C.e1e2<e3  D.e1e2≥e3

查看答案和解析>>

精英家教網(wǎng)已知橢圓E的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為
3
2
,且過拋物線C:x2=4y的焦點(diǎn)F.
(I)求橢圓E的方程;
(II)過坐標(biāo)平面上的點(diǎn)F'作拋物線c的兩條切線l1和l2,它們分別交拋物線C的另一條切線l3于A,B兩點(diǎn).
(i)若點(diǎn)F′恰好是點(diǎn)F關(guān)于-軸的對稱點(diǎn),且l3與拋物線c的切點(diǎn)恰好為拋物線的頂點(diǎn)(如圖),求證:△ABF′的外接圓過點(diǎn)F;
(ii)試探究:若改變點(diǎn)F′的位置,或切線l3的位置,或拋物線C的開口大小,(i)中的結(jié)論是否仍然成立?由此給出一個使(i)中的結(jié)論成立的命題,并加以證明.

查看答案和解析>>

已知橢圓的離心率為e,兩焦點(diǎn)分別為F1、F2,拋物線C以F1為頂點(diǎn)、F2為焦點(diǎn),點(diǎn)P為拋物線和橢圓的一個交點(diǎn),若e|PF2|=|PF1|,則e的值為(  )
A、
1
2
B、
2
2
C、
3
3
D、以上均不對

查看答案和解析>>


同步練習(xí)冊答案